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New Findings

Pathophysiological changes linked to Irritable Bowel Syndrome (IBS) include stress
and immune activation, changes in gastrointestinal microbial and bile acids profiles
and sensitisation of extrinsic and intrinsic gut neurons. This review explores the
potential role for L-cells in these pathophysiological changes.

L-cells, which secrete glucagon-like peptide-1 (GLP-1) in response to nutrients,
microbial factors, bile acids and short-chain fatty acids, may sense IBS-related
changes in the luminal environment. Glucagon-like peptide 1 can act as a hormone, a
paracrine factor or a neuromodulatory factor and through its actions on central or

peripheral neurons, may play a role in gastrointestinal dysfunction.



Abstract

The prevalent and debilitating functional bowel disorder Irritable Bowel Syndrome
(IBS), is characterized by symptoms which include abdominal pain, bloating,
diarrhoea and/or constipation. The heterogeneity of IBS underscores a complex
multifactorial pathophysiology, which is not completely understood, but involves
dysfunction of the bidirectional signalling axis between the brain and the gut. This
axis incorporates efferent and afferent branches of the autonomic nervous system,
circulating endocrine hormones and immune factors, local paracrine and neurocrine
factors and microbial metabolites. L-cells, which are electrically excitable biosensors
embedded in the gastrointestinal epithelium, secrete glucagon-like peptide-1 (GLP-
1) in response to nutrients in the small intestine. However, they appear to function
differently more distally in the gastrointestinal tract, where they are activated by
luminal factors including short-chain fatty acids, bile acids and microbial metabolic
products, all of which are altered in IBS patients. GLP-1 can also interact with the
hypothalamic-pituitary-adrenal stress axis and immune system, both of which are
activated in IBS. Given that a GLP-1 mimetic has been found to alleviate acute pain
symptoms in IBS patients, GLP-1 may be important in the manifestation of IBS
symptoms. This review assessed the current knowledge on the role of GLP-1 in IBS
pathophysiology and its potential role as a signal transducer in the microbiome-gut-

brain signalling axis.



Irritable Bowel Syndrome.

IBS is a common and debilitating gastrointestinal (GI) disorder characterized by
episodic exacerbations of a cluster of symptoms, which include heightened central
pain sensitivity, bloating, diarrhoea and/or constipation (Enck et al., 2016). This
functional bowel disorder has a high prevalence and may significantly impair the
quality of life of sufferers. Diagnosis is symptoms-based, and this is made more
difficult by the degree of heterogeneity in the patient population. Risk factors for the
development of this multifactorial disorder include being female (Lovell & Ford,
2012), having a family history of IBS (Saito & Talley, 2008), childhood trauma (Dinan
et al., 2010) and/ or prior GI infection (Thabane et al., 2007; Schwille-Kiuntke et al.,
2011). Consistent with a role for immune activation in this disorder, elevated
numbers of mucosal T-cells, lymphocytes and mast cells (Chadwick et al., 2002) are
noted in IBS patients. Circulating pro-inflammatory cytokine profiles are also
different in IBS patients as compared to healthy controls (Dinan et al., 2006; Liebregts
et al., 2007). However, pre-morbid psychological conditions increase the likelihood of
developing IBS following infectious gastroenteritis (Thabane et al., 2007). Co-
morbidity with mood disorders, such as depression and anxiety, is more common in
IBS patients (Fond et al., 2014) and a maladaptive stress response, mediated by the
hypothalamic-pituitary-adrenal (HPA) axis, is key to the initiation, severity and
persistence of IBS-associated symptom flare-ups (Dinan et al., 2006). Indeed,
psychosocial and infection-related stresses are additional considerations in
comprehending the chronic relapsing pattern that typifies IBS symptoms (O'Malley
et al., 2011; O'Malley, 2015). Given that glucagon-like peptide (GLP)-1 mimetics have
been found to alleviate acute pain symptoms in IBS patients (Hellstrom et al., 2009; Li
et al., 2017), GLP-1 may be important in the manifestation of IBS symptoms. This
review has assessed the evidence currently available to support a role for GLP-1 -
secreting L-cells in the pathophysiology of Irritable Bowel Syndrome (IBS).
Moreover, its potential importance as a signal transducer pivotal to cross-barrier
communication, from the luminal microbiome to the gut and on to the brain, was

reviewed.



Symptom manifestation in subtypes of IBS patients.

IBS symptoms manifest as bloating, visceral pain and altered bowel habit. Subtypes
include diarrhoea-predominant (IBS-D), constipation-predominant (IBS-C) or
alternating/mixed phenotypes (IBS-A/IBS-M) (Longstreth et al., 2006). The
distribution of these subtypes varies depending on diagnostic criteria used,
populations evaluated and the geographical location of the study (Guilera et al.,
2005; Hungin et al., 2005; Kibune Nagasako et al., 2016). The Rome symptom-based
criteria, which are based on evidence and expert-informed consensus, are used to
diagnose functional bowel disorders including IBS. The criteria are subsequently
subjected to validation in the field. Miscommunication in the bi-directional brain-gut
signalling axis is implicated in bowel dysfunction, however, the enteric nervous
system (ENS) has recently been proposed as a potential organic cause of IBS. The
submucosal neuronal plexus regulates absorption and secretion from the mucosal
epithelium, intramural blood flow and neuroimmune interactions in the GI tract.
The myenteric plexus is an important neuronal regulator of contractile activity.
Although we are gaining a better understanding of the pathophysiology underlying
this disorder, IBS patients continue to be defined according to their predominant
stool pattern, as no clear changes in symptom severity or mood disorders can
differentiate between subtypes (Rey de Castro et al., 2015). Current treatment is

based on targeting of specific bowel symptoms.

Post-prandial exacerbation of IBS symptoms.

A commonly-reported feature of IBS is post-prandial exacerbation of GI symptoms.
Many IBS patients experience diarrhoea, flatus, bloating and abdominal pain
following ingestion of a meal. Particular food-types, such as milk, pulses, wheat and
apples, which are rich sources of poorly absorbed short-chain carbohydrates, are
associated with IBS symptom exacerbation (Ragnarsson & Bodemar, 1998; Morcos et
al., 2009; Cabre, 2010), an effect that is unrelated to IBS subtype or Gl-specific
anxiety, depression, body mass index or age (Bohn et al., 2013). Mechanistically, the
bacterial fermentation of lactose, fructose and sorbitol, fructo-oligosaccharides,

galacto-oligosaccharides and incompletely absorbed sugar polyols such as sorbitol



and mannitol (termed FODMAPs) results in gas build-up, which distends the gut
leading to abdominal pain and abnormal motility in patients. Furthermore,
unabsorbed food may result in osmotic movement of water into the gut lumen
resulting in diarrhoea. Diets which restrict FODMAP-rich foods have had some
success in managing IBS symptoms (Staudacher et al., 2012; Halmos et al., 2014;
Marsh et al., 2016), although not everyone supports this conclusion (Rao et al., 2015;
Peters et al., 2016). A low FODMAP dietary intervention suppresses production of
total short-chain fatty acids (SCFAs) (Hustoft et al., 2017), which are increased in IBS
patients and linked to symptoms such as visceral hypersensitivity and altered
contractile activity (Ford et al., 2014). GLP-1-secreting enteroendocrine L-cells
embedded in the epithelium of the distal gut, where the highest density of microbes
reside, express receptors for SCFAs (Tolhurst et al., 2012).

Intestinal GLP-1 secreting L-cells.

GLP-1 has a well-characterised role in stimulating pancreatic insulin synthesis, but
also has additional functions as a gut regulatory compound (Hellstrom, 2011). GLP-
1, a 30 amino-acid peptide derived from the post-translational processing of
preproglucagon, is secreted basolaterally by L-cells. L-cells are electrically-excitable
biosensors (Chimerel et al., 2014), which sense the arrival of nutrients, such as
glucose and amino acids, in the small intestine (Elliott et al., 1993; Drucker et al.,
2017). Chemosensory activation of L-cells results in membrane depolarisation, action
potential firing and the opening of voltage-gated calcium channels. This
subsequently causes enhanced rates of vesicular exocytosis on the basolateral surface
of the epithelial barrier (Reimann & Gribble, 2016). This is consistent with a peak in
circulating GLP-1 within fifteen minutes of food intake. However, despite the
reduced probability of nutrients being present there, the abundance of GLP-1-
secreting L-cells increases towards the distal end of the GI tract (Steinert et al., 2017).
Moreover, the time it would take for nutrients to reach the distal gut exceeds the
circulating GLP-1 peak. This suggests that L-cells in the small intestine and the colon
have differing functions in terms of the moieties they sense (Greiner & Backhed,

2016). Glucose and amino acids activate small intestinal L-cells, whereas colonic L-



cells expressing receptors for SCFAs and bile acids (Reimann et al., 2008; Tolhurst et
al., 2012). Given its short half-life in the circulation, it is likely that GLP-1, in addition
to its classical endocrine function, is also likely to work through paracrine

mechanisms.

GLP-1 modulates gastrointestinal function.

IBS is characterised by altered motility and absorpto-secretory functions, which may
be centrally or peripherally orchestrated. A placebo-controlled double-blind cross-
over clinical trial, which administered a synthetic GLP-1 analogue, ROSE-010 to a
mixed group of 99 IBS patients, reported anti-spasmodic and pain-relieving
properties (Hellstrom et al., 2009). ROSE-010 appeared to be most effective in IBS-A
subtypes in this trial. A more recent study investigated the potential mechanism
underlying the beneficial effects of the GLP-1 mimetic on abdominal pain in IBS-C
patients. Decreased circulating GLP-1 levels and decreased mucosal expression of
GLP-1Rs was associated with constipation-predominant IBS. Moreover, this
correlated with the severity of abdominal pain (Li et al., 2017). The authors suggested
that lower GLP-1 led to loss of the pro-kinetic effects of GLP-1 in the colon (Camilleri
et al., 2012), resulting in constipation and abdominal pain (Li et al., 2017). Consistent
with the supposition that decreased GLP-1 contributes to pain-related symptom:s,
circulating levels of bioactive GLP-1 were also decreased in a rat model of visceral

pain sensitivity (Yang et al., 2014).

Biologically active GLP-1 has a high affinity for GLP-1 receptors (Reimann et al.,
2008), which are expressed in vagal ganglia (Richards et al., 2014) and in brain
regions such as the nucleus tractus solitarius, the ventrolateral medulla (Lim et al.,
2009) and the hypothalamus (Richards et al., 2014). GLP-1 receptors have also been
detected in both myenteric and submucosal neuronal plexi in the GI tract (Amato et
al., 2010; Kedees et al., 2013), the neural regulators of gut contractile activity and
absorpto-secretory function, respectively. In the upper part of the GI tract, GLP-1
appears to have a mollifying effect on gut function. Using vagal neural pathways,

GLP-1 has been shown to delay gastric emptying (Imeryuz et al., 1997) and small



intestinal secretion (Baldassano et al., 2011) and motility (Nauck et al., 2011). GLP-1
also inhibits post-prandial motility in the antrum, jejunum and duodenum through
direct actions on myenteric neurons (Halim et al., 2018). In contrast to the inhibitory
effects in the proximal GI tract, central administration of GLP-1 resulted in increased
colonic transit, also through vagal signalling (Nakade et al., 2007). Ditferences in
sensory function and the basolateral secretory products of L-cells in the small and
large intestine may underlie the contrasting effects of GLP-1 on GI function in
proximal and distal regions of the gut (Greiner & Backhed, 2016). Alternatively, the
GLP-1 may be important in the divergent symptomology associated with IBS
subtypes. Indeed, in a rat model of IBS, intestinal GLP-1 receptor expression and

circulating GLP-1 was elevated in IBS-C as compared to IBS-D (Chen et al., 2013).

GLP-1 mediated modification of the stress axis

Crosstalk between GLP-1 and the stress hormone, corticotrophin-releasing factor
(CRF), which initiates the HPA signalling axis and is a central tenet in bowel
dysfunction in IBS pathology (O'Malley et al., 2010a; o'malley et al., 2010b; Larauche
et al., 2012), is an additional consideration in the actions of GLP-1. Sustained
activation of the HPA axis in IBS patients (Dinan et al., 2006) is associated with
problematic GI symptoms such as abdominal pain and the urge to defecate
(Kennedy et al., 2014). GLP-1 can feed into this system through a reciprocal
interaction between GLP-1 and the HPA axis. GLP-1 stimulates the HPA axis
through CRF neurons (Larsen et al., 1997), and stress-induced defecation is
attenuated by antagonists of both CRF (Martinez et al., 2004) and GLP-1 (Gulpinar et
al., 2000). Moreover, GLP-1 accelerates stress-induced changes in colonic motility

though vagal signalling (Nakade et al., 2007).

L-cells as chemosensors for an altered luminal environment in IBS?

Many studies have demonstrated that changes in the gut microbiome, including
reduced bacterial diversity and increased temporal instability, are factors worthy of
consideration in understanding IBS pathophysiology (Salem et al., 2018). Evidence

supporting the importance of the microbiome in functional bowel disorders comes



from studies demonstrating the benefits of specific commensal strains in alleviating
IBS symptoms (Tiequn et al., 2015; Yuan et al., 2017). Moreover, microbial dysbiosis
in IBS (Liu et al., 2017) has been implicated in enhanced gut permeability (Simren et
al., 2013), visceral hypersensitivity (Crouzet et al., 2013; Valdez-Morales et al., 2013)
and altered GI motility (Cani et al., 2013; Gudsoorkar & Quigley, 2014). The GI
epithelium is an innate immune barrier isolating the external environment of the gut
lumen from the internal milieu. The intestinal barrier is comprised of a mucus coated
epithelial monolayer whose integrity is maintained by tight junction proteins, which
regulate the paracellular movement of luminal molecules. Beneath the epithelial
layer, intrinsic and extrinsic neurons relay neural information both within the GI
tract but also between the gut and the central nervous system (CNS). However,
evidence that this communication system extends beyond the epithelial barrier to the
microbially-dominated environment of the gut lumen, has resulted in it being
referred to as the microbiota-gut-brain axis (Forsythe et al., 2014; Bonaz et al., 2018;

Martin et al., 2018).

Previous research has demonstrated that luminal bacteria stimulate synthesis of
serotonin in colonic enterochromaffin cells, which in turn modulates host GI
physiology (Yano et al., 2015), hence we know that inter-kingdom communication
across an intact barrier is facilitated by some subtypes of epithelial cells. However,
GLP-1-secreting L-cells may similarly act as cellular transducers to convey
information about the luminal environment to the host. Evidence to support
modification of L-cell signalling by microbial factors include increased secretion of
GLP-1 in rodents with a modified microbiome following antibiotic treatment
(Hwang et al., 2015) or altered dietary fibre intake (Tolhurst et al., 2012).
Furthermore, specific commensal strains increased intestinal and circulating GLP-1
(Stenman et al., 2015; Aoki et al., 2017). Somewhat counter-intuitively, germ-free mice
also exhibit increased serum GLP-1 (Selwyn et al., 2015), although another study
found that germ-free mice exhibited a strong state of GLP-1 resistance, with
impaired GLP-1 evoked gut-brain signalling and enteric nervous system function

(Grasset et al., 2017). GLP-1 levels also increase following dietary supplementation



with fermentable fibre (Massimino et al., 1998), which is converted to SCFAs (acetate,
propionate and butyrate), molecules known to activate L-cells and induce GLP-1
secretion (Tolhurst et al., 2012; Nohr et al., 2013). L-cells also express receptors for bile
acids (Brighton et al., 2015) and the bile acid pool is altered in IBS patients (Mosinska
et al., 2018).

The neuromodulatory actions of GLP-1.

Beneath the epithelium lies a complex network of intrinsic and extrinsic neurons,
including spinal nerves and the vagus nerve, which innervates most of the GI tract
and is comprised of between 70 and 80% afferent nerves (Prechtl & Powley, 1990).
The vagus has been implicated in the actions of specific probiotic strains on central
cognitive processes (Bercik et al., 2011; Bravo et al., 2011; Perez-Burgos et al., 2013),
and some bacterial products are capable of signalling across the mucosal barrier to
stimulate vagal nerve firing (Perez-Burgos et al., 2013; Buckley & O'Malley, 2018).
Lipophilic molecules, such as SCFAs can directly activate afferent terminals (Lal et
al., 2001) but many luminal proteins are large complex protein microbial molecules
(Forsythe et al., 2014), which cannot passively cross the barrier. Sensory nerve fibres
terminate below the epithelial layer and do not reach through to the lumen.
Although infiltration of bacterial products via a leaky epithelium may occur in
disorders such as IBS, physiological mechanism of informing the CNS about the
luminal environment are also likely to exist. Indeed, as previously mentioned,
microbiota can induce modification of gut function through the stimulation of
serotonin secretion (Yano et al., 2015). L-cells are also activated by the bacterial
metabolite indole, which inhibits voltage-gated K* channels, resulting in cellular
depolarisation and sustained secretion of GLP-1 (Chimerel et al., 2014). Evidence of
direct, physical contact between a pseudopod-like elongation of L-cells and efferent
and afferent nerves (Bohorquez et al., 2015) indicates a neurally-mediated
mechanism by which L-cell activation could modify GI function. Indeed, GLP-1 has
direct neurostimulatory actions on the vagus (McKee & Quigley, 1993), through
activation of GLP-1 receptors on vagal afferents (Nakagawa et al., 2004; Ronveaux et

al., 2014). Thus, L-cells are appropriately positioned to facilitate cross-barrier



signalling from the gut lumen to the host peripheral nervous system and on to the

CNS. Although neuroendocrine signalling has been implicated in IBS (El-Salhy et al.,
2012), it has yet to be conclusively demonstrated that the chemosensory actions of L-
cells detecting changes in the luminal micro-environment contribute to altered bowel

function.

Conclusions

IBS is a prevalent and debilitating functional bowel disorder that is characterised by
increased sensitivity to visceral pain and altered bowel habit. In addition to
alterations in immune, endocrine and neural signalling, dysfunctional microbiome-
gut-brain communication is also implicated in the manifestation of IBS symptoms.
GLP-1-secreting L-cells are scattered throughout the GI tract with increasing density
towards the distal end of the gut. In addition to its well-characterised incretin effects,
GLP-1 is recognised to act as a gut regulatory compound with different effects in the
proximal and distal regions of the gut. L-cells basolaterally secrete GLP-1 in response
to a variety of molecules including SCFAs, bile acids and bacterial products, which
are known to be altered in IBS patients. Moreover, afferent nerves on the basolateral
side of the epithelium are sensitive to the neurostimulatory actions of GLP-1 and

GLP-1 increases colonic transit and alleviates visceral pain sensitivity in IBS (figure

1).

Whilst clinical studies have been pivotal in revealing the potential therapeutic
actions of GLP-1 analogues in IBS-related abdominal pain, further translational
studies are needed to determine if this treatment is subtype-specific. Furthermore,
the impact of this treatment on bowel habit needs to be determined. The complexity
of the luminal environment and the multitude of receptors expressed by L-cells
mean that more basic research is needed, both in human tissue and in animal models
to unequivocally support a role for GLP-1-secreting L-cells as cross-barrier signal

transducers contributing to altered bowel function.
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Figure legends
Figure 1: The role of L-cells in IBS pathophysiology

The diagram illustrates the bidirectional brain-gut signalling axis, which is
dysfunctional in irritable bowel syndrome (IBS). Pathophysiological changes in IBS
that have been linked to Glucagon-like peptide-1 (GLP-1)-secreting L-cells are listed.
Potential mechanisms by which GLP-1 may modify gastrointestinal dysfunction are

illustrated.



