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Abstract 34 

The gastrointestinal microbiota has emerged as a key regulator of gut-brain axis signalling with 35 

important implications for neurogastroenterology. There is continuous bidirectional 36 

communication between the gut and the brain facilitated by neuronal, endocrine, metabolic, 37 

and immune pathways. The microbiota influences these signalling pathways via several 38 

mechanisms. Studies have shown compositional and functional alterations in the gut 39 

microbiota in stress-related psychiatric disorders. Gut microbiota reconfigurations are also a 40 

feature of irritable bowel syndrome (IBS), a gut-brain axis disorder sharing high levels of 41 

psychiatric comorbidity including both anxiety and depression. It remains unclear how the gut 42 

microbiota alterations in IBS align with both core symptoms and these psychiatric 43 

comorbidities. In this review, we highlight common and disparate features of these microbial 44 

signatures as well as the associated gut-brain axis signalling pathways. Studies suggest that 45 

patients with either IBS, depression or anxiety, alone or comorbid, present with alterations in 46 

gut microbiota composition and harbour immune, endocrine, and serotonergic system 47 

alterations relevant to the common pathophysiology of these comorbid conditions. Research 48 

has illustrated the utility of faecal microbiota transplantation in animal models, expanding the 49 

evidence base for a potential causal role of disorder-specific gut microbiota compositions in 50 

symptom set expression. Moreover, an exciting study by Constante and colleagues in this 51 

issue highlights the possibility of counteracting this microbiota-associated aberrant behavioural 52 

phenotype with a probiotic yeast, Saccharomyces boulardii CNCM I-745. Such data highlights 53 

the potential for therapeutic targeting of the gut microbiota as a valuable strategy for the 54 

management of comorbid psychiatric symptoms in IBS.  55 

 56 
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1. Introduction 67 

Irritable bowel syndrome (IBS), now regarded as a disorder of gut-brain axis interactions, is 68 

one of the most prevalent gastrointestinal disorders, with varying incidence rates around the 69 

globe, constituting 20-50% of the gastrointestinal workload 1,2. IBS is characterized by 70 

abdominal pain and altered bowel movement without overt structural or biochemical 71 

abnormalities 3. While the understanding of IBS has been improved in recent years concurrent 72 

with some effective therapeutic options becoming available, many IBS patients present with 73 

psychiatric comorbidities, a subset that is much more difficult to treat. This significant cohort 74 

includes approximately 44% and 25% of IBS patients presenting at gastroenterology clinics 75 

with comorbid anxiety and depression respectively 4. Moreover, the co-occurrence of 76 

psychiatric comorbidities is associated with IBS symptom severity 5,6 , while some studies show 77 

the efficacy of specific antidepressants in reducing IBS symptomatology 7. 78 

Psychiatric disorders, such as anxiety disorders (hereafter referred to as anxiety) and major 79 

depressive disorder (hereafter referred to as depression) are among the most prevalent mental 80 

health problems worldwide. It is estimated that 10% of the global population suffers from these 81 

disorders each year 8,9. Although there has been extensive research into the pathophysiology 82 

of depression and anxiety, their diagnosis is still symptom based, with treatment options 83 

remaining suboptimal and stubbornly focused on targeting monoamine neurotransmitter 84 

pathways 10. Independently, IBS, depression and anxiety are complex heterogenous disorders 85 

with an already difficult clinical management profile made more challenging when combined in 86 

comorbid gastrointestinal and psychiatric phenotypes 3,8,9 .  87 

Research in the last decade or more points towards a role of the gut-brain axis in both IBS and 88 

psychiatric disorders 11-13. The gut is in continuous bidirectional communication with the brain 89 

through neuronal, endocrine and immune signalling pathways. The important role the gut 90 

microbiota plays in regulating these routes of communication to influence brain function and 91 

behaviour has seen this axis renamed to reflect this and it is now termed the microbiota-gut-92 

brain axis 14.  93 
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The clinical care of IBS patients with psychiatric comorbidity is complex with treatment failure 94 

common. Repositioning IBS as a disorder of gut-brain axis interactions, along with recognition 95 

of the important role played by the gut microbiota in symptom expression, has led to calls for 96 

integrated clinical management models that blend medical management with behavioural and 97 

dietary interventions 15. Here, we outline why the success of this approach for this particular 98 

subset of comorbid IBS patients demands greater focus on the common ground, and the 99 

diverging routes, that might explain why particular microbiota configurations lead to distinct 100 

clinical representations of IBS.  As of now, the mechanisms underpinning these comorbidities 101 

are not fully known. A recent study also highlighted the bidirectional nature of this comorbidity 102 

by showing that psychiatric symptoms are predictive for the development of IBS, while IBS is 103 

also predictive of depression and anxiety later in life 16. Interestingly, most comorbid IBS 104 

patients develop gastrointestinal symptoms before psychiatric comorbidities 16. After a 105 

summary of the communication pathways of the microbiota-gut-brain axis, we will analyse the 106 

latest literature on psychiatric comorbidities in IBS. This review will focus in particular on 107 

alterations in the gut microbiota reported in IBS, depression, and anxiety and in IBS with 108 

comorbid anxiety and depression. We will discuss how gut microbiota signatures associated 109 

with these disorders might impact on gut-brain axis signalling pathways and the therapeutic 110 

implications of these observations. 111 

 112 

2. Signalling pathways of the microbiota-gut-brain axis 113 

Understanding the role of the gut microbiota in IBS and its psychiatric comorbidities requires 114 

an appreciation of the signalling pathways of the microbiota-gut-brain axis. The main routes of 115 

communication are summarised in Figure 1 and include neuronal, immune and endocrine host 116 

signalling pathways as well as the microbial production or regulation of bioactive molecules 117 

such as neurotransmitters, their precursors and short-chain fatty acids (SCFAs).   118 

-- Insert Figure 1 here – 119 
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Neuronal communication along the microbiota-gut-brain axis is mostly mediated by the 120 

autonomic nervous (ANS), with the enteric nervous system (ENS) arm regulating important 121 

mechanisms locally in the gastrointestinal tract. One of the most important routes of 122 

communication is the vagus nerve. The vagus nerve connects the brain to all visceral organs 123 

among others and relays information via 80% afferent and 20% efferent fibers 17-19. A portion 124 

of afferent axonal endings are located in the mucosa of the GI tract. These afferents are 125 

thought to contain a wide array of receptors, making them able to detect signals such as gut 126 

hormones, neurotransmitters, and bacterial metabolites 14.  127 

A major player in endocrine signalling of the microbiota-gut-brain axis is the hypothalamic-128 

pituitary-adrenal (HPA) axis, the major stress axis of the body, whose activation results in the 129 

release of glucocorticoids. This endocrine signalling pathway can be restrained at brain-level 130 

by negative feedback of glucocorticoids acting on glucocorticoid receptors. Both IBS and 131 

psychiatric disorders show dysregulation of the HPA axis 20,21. It is now appreciated that the 132 

microbiota plays a key role in the priming and regulation of this axis, shown initially by 133 

increased stress response in germ-free animals, which is reversed by colonisation with  134 

specific bacteria or a more complete microbiota 22,23. In turn, it has long been known but 135 

recently reinforced in the preclinical literature that stress exposures can also modify gut 136 

microbiota composition and function 14,24. 137 

The crosstalk between the microbiota and the hosts’ immune system mostly takes place at the 138 

mucosa either by direct contact or through molecules secreted by the microbiota and is 139 

essential for priming and education of the immune system 25. The communication is facilitated 140 

by microbe-associated molecular patterns, which are sensed by colonocytes and immune cells 141 

through pattern recognition receptors such as toll-like receptors (TLRs), triggering an immune 142 

response by the secretion of cytokines. The impact of the gut microbiota on the immune system 143 

extends to the brain, shown by changes in microglia morphology and gene expression profile 144 

in germ-free animals 26,27. 145 
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An important topic in the context of inflammation in the gut-brain axis is the integrity of the 146 

intestinal barrier. Changes in intestinal permeability creates a passage for bacteria and their 147 

products from the lumen to the ENS, immune cells and systemic circulation, which can evoke 148 

an immune response. Increased intestinal permeability is associated with low-grade 149 

inflammation, a neurobiological feature of both IBS and depression 28,29.  150 

Another form of communication in the microbiota-gut-brain axis is via microbial metabolites, 151 

such as SCFAs and neurotransmitters. SCFAs are mostly used as an energy source by the 152 

host, for example butyrate is the primary energy source for colonocytes. The SCFAs not 153 

utilized by colonocytes enter the systemic circulation and other tissues including the brain 30. 154 

SCFAs can activate a set of G-protein coupled receptors, FFAR2 and FFAR3 being the most 155 

investigated. They are found in tissues such as the colon, the heart, and immune cells. FFAR3 156 

is also expressed in the peripheral nervous system in enteric plexi, the portal nerve and 157 

autonomic and sensory ganglia 31, which further implicates their involvement in gut-brain 158 

signalling 32.  159 

The microbiota can produce a wide range of neuroactive molecules that have implications for 160 

behaviour, mood, and cognition. Many of these neurotransmitters (GABA, noradrenaline, 161 

serotonin) are involved in both gastrointestinal and brain function. One of the most important 162 

neurotransmitters in terms of the microbiota-gut-brain axis is serotonin. Serotonin is an 163 

important signalling molecule in both the CNS and the ENS and is produced from the precursor 164 

tryptophan, an essential amino acid 33. The majority of serotonin is synthesized by 165 

enterochromaffin cells. However, most tryptophan is metabolised along the kynurenine 166 

pathway, whose end products have neuroactive properties and are NMDA receptor 167 

antagonists and agonists 34. In contrast to serotonin, both tryptophan and kynurenine can cross 168 

the blood brain barrier and are further metabolised in the brain by glial cells 35.  169 

The microbiota can directly modulate the levels of tryptophan and its metabolites by producing 170 

or utilising tryptophan themselves 36. The third major pathway of tryptophan metabolism is 171 

microbial and results in indoles and its derivates, such as indole-3-acetic-acid (IAA), indole-3-172 
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propionic acid (IPA) ligands of the aryl hydrocarbon receptor (AhR) 37. AhR is a key regulator 173 

of the immune system, involved in the function of macrophages, dendritic cells and neutrophils 174 

38. For example, a lack of AhR ligand-producing bacteria is associated with increased intestinal 175 

inflammation 39. 176 

Although the majority of serotonin is synthesised by the host, its production is strongly 177 

modulated by gut bacteria. Studies in germ-free animals showed that the levels of tryptophan, 178 

serotonin, and kynurenine are significantly different from conventional animals in the gut 179 

lumen, plasma, and the brain, both at baseline and following acute stress exposures 23,40-42. 180 

One of the theories involving the role of tryptophan in affective disorders is that the more 181 

tryptophan is converted into its alternative metabolites, the less tryptophan can enter the brain 182 

via the circulation, decreasing central levels of serotonin 43.  183 

 184 

3. Gut microbiota compositional alterations associated with disorders of the gut-185 

brain axis 186 

There is a growing body of evidence suggesting alterations in gut microbiota composition or 187 

function in psychiatric disorders 44, which has been associated with increased levels of 188 

inflammation 45. It is generally thought that gastrointestinal and psychiatric disorders are 189 

associated with decreased alpha diversity (richness, evenness, and biodiversity of the 190 

microbiome) 46-48. However, while some published articles show reduced alpha diversity in 191 

these disorders, other studies found no changes 49,50.  192 

Table 1 summarises changes in relative abundance of specific bacteria associated with IBS, 193 

depression and anxiety, based on the findings in these systematic reviews, in comparison with 194 

the relatively few studies looking at IBS with comorbid anxiety and depression. Overall, these 195 

disorders present an altered gut microbiota signature but likely due to the heterogeneity of 196 

these disorders, conflicting results are common. However, two recent metanalyses identified 197 

the gut microbiota signatures most consistently found in depression, anxiety, and IBS 51,52. 198 
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These changes in microbial abundance were hypothesized to play functional roles in these 199 

disorders. For examples, the increased abundance of strains such as Escherichia in anxiety 200 

has been hypothesized to lead to increased secretion of exotoxins potentially inducing 201 

inflammatory processes impacting on the central nervous system 53. In relation to IBS, it was 202 

hypothesized that the metabolic products of the strains Lactobacillaceae and Bacteroides, 203 

such as organic acids or toxins respectively, may contribute to the IBS pathology by causing 204 

bloating or inflammation peripherally 52.  205 

Fewer studies have investigated the microbiota using the more informative shotgun 206 

metagenomic approach. One such study found that numerous species of the genus 207 

Bifidobacterium such as B. adolescentis, B. longum, B. dentium are increased in depressed 208 

patients 54. This was unexpected because Bifidobacterium strains are commonly used as 209 

probiotics with preclinical evidence supporting their possible use for the treatment of 210 

psychiatric disorders 55, although whether a particular microbial member of the gut microbiota 211 

should be considered beneficial or harmful depends on context. The most recent study using 212 

metagenomic assessment identified 47 species with altered relative abundances in patients 213 

with depression compared to healthy controls. Most of the enriched species belonged to the 214 

genera Bacteroides, whereas the depleted species belonged to the genera Blautia, 215 

Eubacterium and Clostridium 53. The largest study to date, which included a discovery and 216 

validation cohort, showed that Coprococcus spp. and Dialister are both depleted in depression 217 

56. In addition, the study by Valles-Colomer and colleagues 56 conducted a module-based 218 

analysis, profiling microbial pathways with neuroactive potential involved in microbiota-gut-219 

brain axis communication. They showed that depression and quality of life were associated 220 

with GABA and DOPAC, a metabolite of dopamine. Interestingly, GABA has also been linked 221 

to visceral pain perception 57.  222 

Some studies aimed to subdivide IBS patients with and without distinct microbial signatures. 223 

For example, IBS patients characterized by an increased Firmicutes:Bacteroidetes ratio show 224 

increased abundance of strains of SCFA-producing eubacteria as well as flagellin producing 225 



Wilmes et al. 7 
 

 

bacteria 58, which are associated with increased visceral hypersensitivity and low-grade 226 

inflammation 59,60. Interestingly, it was the patients showing a similar gut microbiota signature 227 

compared to healthy controls were linked to comorbid depression 58. Similarly, a distinct gut 228 

microbiota signature was shown with increased IBS symptom severity. However, in this study, 229 

psychiatric comorbidities were associated with the gut microbiota signatures reported in severe 230 

cases of IBS 61.  231 

Relatively few studies have directly assessed the gut microbiota signatures associated with 232 

psychiatric comorbidities in IBS. A recent study, analysing the therapeutic effect of FMT, 233 

showed that IBS patients and healthy controls show higher alpha diversity compared to IBS 234 

with comorbid depression. Similarly, comorbid IBS patients clustered differently from IBS 235 

patients and healthy controls in a beta-diversity analysis 62. Research has also suggested that 236 

patients with IBS and depression show a similar gut microbiota imbalance characterized by 237 

either high levels of Bacteriodes or Prevotella 63. Further analysis showed that comorbid 238 

patients show a similar enterotype to healthy controls, characterized by dominant genera 239 

including Bacteroides, Faecalibacterium and Lachnospiraceae. However, differences were 240 

shown in the composition of non-dominant bacteria. Of note is that the presence of depression 241 

at baseline was associated with lasting effect of FMT in IBS-related quality of life and fatigue 242 

in patients with non-constipated IBS 64. 243 

There have not yet been extensive attempts to address the gut microbiota in IBS patients with 244 

comorbid anxiety. De Palma and colleagues identified indicator species, rather than taxonomic 245 

differences in relative abundances per se, of the genera Eggerthella, Blautia, Copcrococcus, 246 

Streptococcus and Clostridium, which were associated with the disease state of comorbid 247 

anxiety 65. However, this was based on a small number of IBS subjects with and without 248 

anxiety, making definitive conclusions about a distinct comorbid-anxiety related gut microbiota 249 

signature difficult.  250 

While it is hard to confidently compare results derived from single studies to that of meta-251 

analyses, it does appear possible that comorbid patients cluster differently than patients with 252 
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one of the disorders alone. However, there is a greater need for studies including a clinical 253 

diagnosis of IBS patients with comorbid depression and anxiety rather than the more common 254 

approach of assessing high levels of depression and anxiety scores.  255 

 256 

4. Signalling pathways altered in gastrointestinal and psychiatric disorders. 257 

It has been theorised that the low-grade inflammation, such as increased cytokine levels 66 258 

associated with depression, stems from increased intestinal permeability 67,68 which in turn 259 

results in increased contact of the immune system to bacteria. Similarly, anxiety is associated 260 

with a distinct inflammatory state 69,70. Increased inflammatory signalling may dysregulate the 261 

HPA axis, which is associated with symptoms of anxiety and depression 71. Bacteria showing 262 

a higher relative abundance in depression and anxiety, including Eggerthella and 263 

Enterobacterales, are associated with increased intestinal inflammation and permeability 72. 264 

This low-grade inflammation can be further exacerbated by the loss of SCFA-producing 265 

bacteria, such as Faecalibacterium, which have anti-inflammatory properties 73.  266 

IBS is similarly associated with low-grade intestinal and systemic inflammation 74. Studies 267 

showing an increased production of pro-inflammatory cytokines in IBS patient derived PBMCs, 268 

indicate  also an association with anxiety symptoms 75. Low-grade intestinal inflammation 269 

characterized by increased eosinophil and mast cell numbers in the descending colon may 270 

drive the gastrointestinal pathology of IBS 76. Mucosal inflammation driven by changes in 271 

microbiota composition and strains including Prevotella is associated with overall immune 272 

dysregulation 77. In conjunction with this, it has been shown that IBS patients show altered 273 

tryptophan metabolism with a shift towards the kynurenine pathway 78. This change has been 274 

linked to an altered  proinflammatory state via activation of TLRs 79. Kazemi et al. additionally 275 

showed an improved kynurenine/tryptophan ratio in the blood of the subjects using a probiotic 276 

mix containing L. helveticus and B. longum 80. Psychiatric comorbidities in IBS can potentially 277 

be linked to increased neuroinflammation triggered by the systemic inflammation seen in these 278 
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disorders 66,69,74. These changes are thought to also be in part modulated by changes in SCFA 279 

production 32. In addition, microglia activation has been observed in animal models of stress-280 

induced changes in the microbiota-gut-brain axis 81. Changes of the gut microbiota signature 281 

in these disorders could potentially evoke similar changes relevant for the pathophysiology.  282 

Affective disorders are believed to be mainly caused by dysregulation of neurotransmitters in 283 

the brain. For example, the majority of current medications for depression and anxiety act by 284 

increasing the level of monoamines in the synapses 8,9. The level of these neurotransmitters 285 

in the brain is also strongly affected by the gut microbiome. Germ-free animals show altered 286 

neurotransmitter concentrations in the brain in addition to reduced anxiety-like behaviours 23,82 287 

and these serotonergic system alterations are differentially modulated by acute stress 42. 288 

Interestingly, one of the common therapeutic interventions for IBS are antidepressants. While 289 

tricyclic antidepressants (TCAs) are recognized to be an effective treatment in IBS, selective 290 

serotonin reuptake inhibitors are not as efficacious 83. However, serotonin plays an important 291 

role in gastrointestinal motility whereby antagonism of the serotonin 5-HT3 receptor improves 292 

stool quality 84 and decreases motility in IBS-D patients 85. 5-HT4 receptor agonist have also 293 

proven useful in relief of constipation 86. Serotonin is also a modulator of visceral pain as 5HT-294 

3 antagonism increased colonic compliance 87 and agonism of 5HT-4 reduced sensitivity to 295 

rectal distension 88. The involvement of serotonin in mood disorders has also been extensively 296 

studied, particularly in depression, however, its precise neurobiological role in psychiatric 297 

disorders is likely of greater complexity than heretofore appreciated 89. Overall, serotonin is a 298 

key signalling molecule in the gut-brain axis implicated in the core symptoms experienced by 299 

IBS and patients with psychiatric comorbidity.      300 

IBS has frequently been associated with structural brain changes. For example, one study 301 

showed reduced volumes in multiple cortical and limbic structures in female IBS patients 302 

compared to healthy controls 90. However, the majority of the differences were associated with 303 

early life trauma and not IBS alone per se, highlighting the importance of early-life stress in 304 

this disorder 90. Other studies showed alterations in white matter of IBS patients between basal 305 
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ganglia, thalamus, and prefrontal cortex (PFC) 91. Interestingly, when grouping IBS patients 306 

based on the microbiota profile, patients characterised by a reduced Firmicutes:Bacteriodetes 307 

ratio present alterations in the anterior insula, the motor cortex and the ventral PFC. 308 

Furthermore, increasing volume of the posterior insula, was associated with changes in SCFA 309 

metabolism and glutamate metabolism 92. Similarly, patients with depression show structural 310 

brain alterations such as reduced hippocampal volume 9,93. These alterations are accompanied 311 

by reduced expression of BDNF in the corresponding brain regions and in the serum 94,95. 312 

Interestingly, reduced serum levels of BDNF have also been reported in comorbid IBS patients 313 

96. It has been shown that brain BDNF levels are modulated by the microbiota with germ-free 314 

animals showing reduced BDNF expression in the hippocampus 22,23. However, mechanisms 315 

behind the regulation of BDNF by the microbiota are still unclear. Future studies should identify 316 

brain regions and circuits, such as the thalamus or prefrontal areas important for modulation 317 

of sensory information and emotions, common across these pathologies responsible for the 318 

symptom presentation. 319 

 320 

5. Preclinical models for comorbid IBS 321 

Part of the difficulty in gaining mechanistic insights in IBS with psychiatric comorbidity pertains 322 

to the limited availability of preclinical animal models of complex heterogenous behavioural 323 

phenotypes. Nevertheless, some options do go some way towards recapitulating a relevant 324 

constellation of gastrointestinal and psychiatric symptoms. 325 

5.1. Maternal separation 326 

Maternal separation is a well-established rodent model of early life stress and results in 327 

widespread changes across the microbiota-gut-brain axis 97. The maternal separation 328 

paradigm does not just model the animal behavioural correlates of one specific disorder but 329 

rather recapitulates several aspects of stress-induced psychiatric disorders and produces 330 

robust and reproducible changes across the microbiota-gut-brain axis. These alterations 331 
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include perturbations in gut microbiota 97, which are detectable in adulthood, increases in 332 

anxiety- and depressive-like behaviours 98,99 as well as development of visceral 333 

hypersensitivity 100, a hallmark of IBS thought to explain the abdominal pain which is a 334 

dominant characteristic of this disorder 101.  335 

In terms of maternal separation-induced alterations in signalling pathways of the microbiota-336 

gut-brain axis, this early-life stress exposure has also been shown to alter central 337 

neurotransmitter levels, particularly monoamines such as serotonin and noradrenaline 102,103. 338 

As serotonin plays an important role in gut to brain communication with respect to mood 104 339 

and descending pain pathways 105, changes in levels may adversely affect gut function and 340 

communication with the CNS. Interestingly, maternal separation has also been shown to alter 341 

central serotonin transporter expression 106. It has been seen that maternal separation also 342 

results in upregulation of TLR4 in the paraventricular nucleus of mice as well as visceral 343 

hypersensitivity which is blocked by inhibition of TLR4 signalling 107, supporting the notion of 344 

stress-induced dysregulation of gut-brain axis signalling. 345 

Maternal separation has also has also been shown to cause reprogramming of the HPA axis, 346 

leading to profound effects on endocrine signalling whereby both baseline 97,108 and stress-347 

induced 109 corticosterone levels are increased. Dysregulation of the HPA axis by maternal 348 

separation may be likened to clinical cases of IBS where stress reactivity and recovery is 349 

altered, and early life stress is a known risk factor  110,111. 350 

5.2. Faecal microbiota transplantation 351 

FMT studies in rodents currently provide the strongest evidence for an involvement of the gut 352 

microbiota, both in the expression of specific symptoms and the alterations in gut-brain axis 353 

signalling pathways of relevance to the pathophysiology of IBS and affective disorders. Multiple 354 

studies have used FMT to investigate gastrointestinal, behavioural and molecular alterations 355 

associated with IBS. Animals in receipt of a microbiota transplant from IBS patients with 356 

predominant constipation or patients with chronic constipation developed delayed GI transit 357 
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and alterations in intestinal contractions, which was accompanied by decreased levels of 358 

SCFAs 112,113. Conversely, a study using faecal material from diarrhoea-predominant IBS 359 

patients (IBS-D) developed increased gastrointestinal transit. Furthermore, they showed 360 

associations between the gut microbiota, IBS and psychiatric comorbidities.  361 

Studies showing a disturbed gut microbiota profile in patients with depression linked these 362 

alterations to disrupted tryptophan metabolism and intestinal low-grade inflammation 47. This 363 

was achieved by FMT of depressed patients to rats, which induced a similar behavioural and 364 

molecular phenotype to the donors. Two studies using a similar approach linked the 365 

microbiota-induced depression in mice to alterations in the CREB signalling pathway in the 366 

olfactory bulb 114 and alterations of carbohydrate and amino acid metabolism 115. The latest 367 

study transferring the microbiome of depressed patients into mice showed alterations in 368 

neurotransmitter levels in the brain and inflammatory markers in the serum 116.  369 

Earlier studies indicated the rodent-to-rodent transfer of anxiety-like behaviours 117 and human-370 

rat transfer of visceral hypersensitivity 118. Taken together, FMT studies confirm the individual 371 

adoptive transfer of both the cardinal features of IBS (visceral hypersensitivity, motility) as well 372 

as the psychiatric comorbidity (depression and anxiety-like behaviours) 14. Germ-free mice 373 

colonized with faecal microbiota of IBS-D patients with comorbid anxiety showed, in addition 374 

to gastrointestinal motility alterations, increased anxiety-like behaviour, 65 which was absent in 375 

mice receiving the donor material from patients with IBS only and associated with increased 376 

immune activation in the colon. This study confirms the simultaneous transfer of multiple 377 

phenotypes via the gut microbiota, positioning FMT studies as a useful preclinical approach to 378 

study IBS with psychiatric comorbidity.  379 

In this issue, leading on from their previous study 65, Constante and colleagues 119 investigated 380 

the treatment of comorbid anxiety in IBS using FMT in germ-free mice treated with the probiotic 381 

Saccharomyces boulardii CNCM I-745 (S. bou). Treatment with S. bou improved anxiety-like 382 

behaviour, but not gastrointestinal motility alterations in mice. These results go a step beyond 383 

implicating this microbiota configuration in comorbid symptom expression by confirming that 384 
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an intervention targeting this microbiota can improve symptoms relevant to anxiety. The 385 

microbiota profiles revealed differences between the mice transplanted with material from the 386 

IBS patient and the healthy control, which were in part normalized by S. bou treatment. On the 387 

molecular level, they showed a role of indoles (microbial metabolites of tryptophan) and 388 

immune activation in IBS with comorbid anxiety. While no clear association was shown 389 

between the gut microbiota compositional differences and alterations in indole levels, they 390 

nicely linked the anxiolytic effect of S. bou to increased indole production. S. bou increased 391 

both the levels of IAA in the faeces as well as the expression of bacterial genes relevant for 392 

indole alkaloid synthesis, possibly by increasing the abundance of indole producing bacteria, 393 

such as Lactobacillus. However, the associated increase in AhR activity failed to reach 394 

significance posing the questions of if, and by which mechanisms, the increased indole 395 

production induces the anxiolytic effects. Conversely, the authors reported increased 396 

expression of the capsaicin receptor TRPV1 in colonic tissue of mice with comorbid IBS-397 

associated microbiota. This receptor, important for the modulation of nociception, is mainly 398 

found on neurons of the peripheral nervous system. While TRPV1 expression was associated 399 

with the anxiety-like behaviour, it was not modulated by S. bou. Altogether, this study reports 400 

some interesting observations which are potentially relevant to comorbid IBS treatment.  401 

As provocative and timely as the study is, the authors use a single donor for FMT into mice, in 402 

contrast to recommendations for the use of multiple individual donors made recently by Walter 403 

and colleagues 120. The authors previous work showed the successful transplantation of 404 

phenotypes via the use of multiple donors, providing strong evidence for the gut microbiota in 405 

both IBS specifically and its comorbidities 65. It is not clear from the current study whether the 406 

beneficial effects of S. bou are applicable to a wider range of microbiome compositions of 407 

different IBS patients or indeed how well it applies to different comorbidities such as 408 

depression. Gut microbial signatures of different donors could be differentially affected by S. 409 

bou, leading to different outcomes. It would also be interesting to see how effective S. bou 410 

treatment is against IBS patients without psychiatric comorbidities and whether some of the 411 
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other cardinal features of IBS including visceral hypersensitivity were impacted. This raises the 412 

question of whether the mechanisms described are exclusively altered in comorbid patients or 413 

if they also generalise to other subgroups of IBS. The authors recommend that the first point 414 

of study in future clinical trials in IBS should be in the subpopulation with this psychiatric 415 

comorbidity. These considerations aside, this study brings important additional insights, 416 

expanding on the results reported in previous studies with mechanistic insights and highlighting 417 

the therapeutic possibilities of S. bou. 418 

 419 

6. The gut microbiota: a novel target for treating psychiatric comorbidities in IBS 420 

Currently, treatment options for IBS revolve around symptom control. Some of the more 421 

common medications in the treatment of IBS are antispasmodics or tricyclic antidepressants 422 

(TCAs) 121.  Antispasmodics, exerting their effects by relaxation of intestinal smooth muscle, 423 

are currently not recommended by the new clinical guideline by the American college of 424 

gastroenterology although only currently available in the United States were evaluated 122. 425 

TCAs such as amitriptyline mainly improve visceral pain, possibly by acting on the 426 

norepinephrine-, dopamine- and acetylcholine system 123. The dose of TCA used is often below 427 

that employed in the treatment of depression so the extent to which psychiatric comorbidities 428 

are potentially treated by gut-brain neuromodulatory agents is unclear 121. The integration of 429 

psychological behavioural approaches into gastroenterology practice is now more routinely 430 

considered 124, building on the success of gut-focused hypnotherapy as an option in treatment-431 

refractory IBS 125. The use of food supplements and diet as treatment options has recently 432 

been evaluated in this journal 126. These varied approaches reflect a willingness to target 433 

multiple levels of the gut-brain axis to deliver gastrointestinal symptom relief. 434 

One important implication of the study from Constante and colleagues 119 is the potential for 435 

therapeutic targeting of the gut microbiota to alleviate the comorbid psychiatric symptoms. 436 

Does this mean that specific features of the comorbid gut microbiota lead independently to the 437 
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cardinal and behavioural features of IBS? The use of a single probiotic strain then, based on 438 

the results of this study, is unlikely to be sufficient to improve the global symptom profile in IBS. 439 

It has of course long been appreciated that the beneficial effects of specific probiotics are strain 440 

specific and a number of therapeutic options can be considered for targeting the gut microbiota 441 

to improve gut-brain axis signalling pathways 127. 442 

 443 

6.1. Prebiotics and probiotics 444 

Consideration of probiotics (defined as “live microorganisms which when administered in 445 

adequate amounts confers a health benefit on the host” 128 and prebiotics (defined as ‘a 446 

substrate that is selectively utilized by host microorganisms conferring a health benefit’ 129) use 447 

for treatment of IBS symptoms and associated psychiatric comorbidities has increased in 448 

recent years (for review see 130). Although the exact mechanisms of action of specific prebiotics 449 

and probiotics have not been fully elucidated, it has been seen that different prebiotic blends 450 

such as polydextrose, galactooligosaccharide and probiotics such as Lactobacillus rhamnosus 451 

GG ameliorated maternal separation-induced anxiety-like behaviour as well as altering 452 

hippocampal levels of stress-related genes 131. Similarly, a prebiotic blend combined with milk 453 

fat globule membrane, the bioactive fraction of breastmilk, attenuated MS-induced visceral 454 

hypersensitivity and facilitated faster return to baseline of stress-induced corticosterone levels 455 

132.  456 

Evidence supporting the role of prebiotics and probiotics against IBS symptoms is not purely 457 

preclinical whereby IBS patients administered B. longum subsp. longum 35624 (formerly B. 458 

infantis 35624) for 8 weeks reported a reduction in IBS symptomatology with respect to 459 

abdominal pain, bloating and bowel movement difficulty as well as normalisation of the anti-460 

inflammatory: proinflammatory cytokine ratio 133. Several other studies have assessed the 461 

efficacy of this treatment with varying degrees of success (for review see 130). It can be seen 462 

above and from recent technical reviews and clinical guidelines that while some prebiotic and 463 
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probiotics have shown promise in the symptomatic treatment of IBS specifically in the context 464 

of a single trial, the jury remains out on making strong recommendations 134,135. Additional and 465 

robust clinical studies are required to determine if we can achieve benefits for associated 466 

comorbid psychiatric conditions. 467 

  468 

6.2. Therapeutic faecal microbiota transplantation  469 

In the recent years, evaluation of the use of FMT from healthy donors as a treatment option 470 

for gastrointestinal disorders has increased. There are multiple studies showing the benefits 471 

of FMT as a treatment for IBS, further supporting the role of the microbiota in this disorder. The 472 

use of a single FMT in IBS patients improved the gastrointestinal symptoms in a subset of 473 

patients for a prolonged duration 136,137. Furthermore, studies showed that the use of FMT 474 

additionally improved symptoms of affective disorders, providing evidence for a causal role of 475 

the microbiota in psychiatric comorbidities in IBS 62,138. A double-blind, randomized, placebo-476 

controlled study investigating the effect of FMT in IBS patients showed the effectiveness of 477 

FMT as a treatment option and determined that the presence of depression at baseline is 478 

predictive of successful treatment 64. While these studies look promising for the treatment, FMT 479 

is currently not recommended as a treatment option, as evidence is still limited and large 480 

double-blind, placebo-controlled trials are required to determine the treatment efficacy 122,139. 481 

There are a number of important factors to consider in the selection of suitable donors, 482 

including microbiota profile, in addition to FMT dose that may be critical to a successful FMT 483 

140. Interestingly, European guidelines on donor selection for the use of faecal microbiota 484 

transplantation in clinical practice does recommend exclusion of subjects with a history of 485 

psychiatric conditions 141.  486 

 487 

7. Conclusion 488 
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Evidence continues to accumulate in support of the view that the strong link between 489 

gastrointestinal and psychiatric disorders is mediated by the microbiota-gut-brain axis. 490 

Individually these disorders share similar pathophysiological mechanisms, such as increased 491 

pro-inflammatory states or changes in monoamine levels. Many questions remain surrounding 492 

the nature of the clinical entity that sits at the intersection between IBS, depression and anxiety. 493 

It is plausible to conceptualise common dysfunctions in gut-brain axis signalling pathways that 494 

define this troublesome subset of patients. While this may be a preferable conclusion from a 495 

treatment perspective, the reality hinted at by Constante and colleagues 119 is more complex 496 

and may develop around a number of diverging targets.  497 

-- Insert figure 2 here -- 498 

What this intriguing study does not answer is why specific microbiota configurations, 499 

compositional or functional, lead in some cases to IBS and in others IBS with psychiatric 500 

comorbidity. This is an important missing piece in the puzzle that requires increased research 501 

focus as the current evidence is insufficient to draw definitive conclusions. Animal models of 502 

IBS with psychiatric comorbidity hold promise to help disentangle the molecular mechanisms 503 

at play and to expand on the associations identified between the gut microbiota, pain pathways 504 

and indole production 119. It will be important to tread carefully in this regard and not to assume 505 

that the signalling pathways implicated in the benefits of particular interventions automatically 506 

double as a neurobiological basis for psychiatric comorbidity in IBS.  Improving our 507 

understanding of how the relevant signalling pathways for depression and anxiety overlap with, 508 

or deviate from, those important for the cardinal gastrointestinal features of IBS will be critical. 509 

Despite the complexity of these interactions, therapeutic targeting of the gut microbiota for the 510 

management of comorbid psychiatric symptoms in IBS may be a strategy worth the effort 511 

involved. 512 
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Tables 880 

 881 

Table 1: Gut signatures associated with IBS, depression, anxiety, and comorbid IBS.  882 

↑ indicates increase, ↓ indicates decrease. 883 

Taxonomic 
rank 

IBS Depression Anxiety Comorbid IBS and 
Depression 

Phylum Firmicutes: 
Bacteroidetes ↑58 

Actinobacteria↑51 
Bacteroidetes↓51 

Firmicutes↓51  

Order    Enterobacterales↑ 51  

Family Lactobacillaceae↑52 
Enterobacteriaceae↑52 
 

Prevotellaceae↓51 Enterobacteriaceae↑51 
Ruminococcaceae↓51 

 

Genus Bacteroides↑52 
Bifidobacterium↓52 
Faecalibacterium↓52 
Eubacterium↑58 
 

Faecalibacterium↓51 
Sutturella↓51 
Coprococcus↓51 
Eggerthella↑51 

Escherichia/Shigella↑51 
Subdoligranulum↓51 
Dialister↓51 

Bacteriodes ↑63 
Faecalibacterium 
↑63 
Lachnospiraceae↑63 

 884 

  885 



Wilmes et al. 27 
 

 

Figure Legends 886 

 887 

Figure 1. Summary of microbiota-gut-brain axis signalling pathways 888 

 There are a number of important routes of communication in the microbiota-gut-brain axis that 889 

may be relevant for the expression of gastrointestinal and psychiatric symptoms in IBS. It is 890 

well known that stress, a major predisposing factor for the development of both IBS and 891 

depression in later life, may also impact on gut microbiota composition and function. 1) 892 

Neuronal 2) Endocrine 3) Immune and 4) Microbial signalling pathways are also associated 893 

with specific symptom sets. Alterations in the composition and function of the microbiota have 894 

been reported in IBS, depression and anxiety. These alterations can, for example, result in 895 

dysregulation of monoamine signalling and alterations in microbial metabolites which may be 896 

related to systemic inflammation. It is also now appreciated that the prominent gastrointestinal 897 

features of IBS including constipation, diarrhoea and visceral pain may worsen the associated 898 

comorbid psychiatric symptoms such as anxiety and depression. It is still unclear if IBS with 899 

psychiatric comorbidity represents a distinct clinical entity that can be explained on the basis 900 

of converging gut-brain axis signalling pathways. 901 

Figure 2: A microbial perspective on the intersection between IBS, depression and 902 

anxiety 903 

There is currently a poor understanding of the nature of the clinical entity that sits at the 904 

intersection between IBS, depression and anxiety. One possibility is that a comorbid gut 905 

microbiota drives aberrant signalling along the gut-brain axis, leading to the manifestation of 906 

both gastrointestinal and behavioural symptom sets. Increased research efforts are required 907 

to understand why specific microbiota configurations lead in some cases to IBS and in others 908 

IBS with psychiatric comorbidity.  909 

  910 
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