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Abstract—The MASH Digital Delta-Sigma Modulator (DDSM)
based divider controller represents a speed bottleneck in state
of the art commercial PLL-based fractional-N frequency syn-
thesizers. As next generation systems require higher phase
detector frequencies, there is a need to make ever faster divider
controllers. This paper describes a fine-grained nested cascaded
MASH DDSM which is significantly faster than state of the
art divider controllers, thereby eliminating the current speed
bottleneck.

I. INTRODUCTION

The Digital Delta-Sigma Modulator (DDSM) is ubiquitous
in a wide range of communications and consumer devices.
The DDSM quantizes a discrete input signal to reduce the
signal bit-width. The quantization noise is suppressed at low
frequencies (shaped), while higher-frequency noise can be eas-
ily low-pass filtered. A popular class of DDSM is the MASH
DDSM, which features low-frequency noise suppression [1].

A typical communications application is divide ratio gener-
ation in a fractional-N PLL [2], [3]. When the ratio between
the desired output frequency and the reference frequency is
fractional, a divider control signal is required with a fractional
mean component. The MASH DDSM can be used to generate
a modulated digital output whose mean is the constant input
divided by 2m, where m is the resolution of the quantizer.
Most of the shaped quantization noise is filtered by the loop
response, while the in-band noise is typically lower than other
PLL noise sources, and therefore negligable [4].

There are many good reasons to maximize the MASH
DDSM clock frequency. In the PLL, the DDSM is clocked
at the reference clock frequency, and the increased output
frequencies demanded by next generation networks require
ever higher reference frequencies [5]. Additionally, a number
of noise sources, such as reference clock spurs and charge
pump noise, show an inverse relationship to reference fre-
quency [6], [7]. In signal processing applications, increased
MASH DDSM clock frequencies are also desirable as the
noise is shaped over the frequency range (0, fclk/2); therefore,
increasing the clock frequency increases the frequency band

over which noise suppression occurs. However, the DDSM
is often a speed bottleneck, as it employs a large m-bit
adder in order to achieve quantization and feedback. The
nested mixed-radix DDSM [5] employs two DDSMs, thus
increasing precision without reducing the speed of the system,
but noise performance can be degraded unless the parameters
are carefully chosen in order to mask additional tones which
might be produced by the auxiliary DDSM.

This paper describes a Nested Cascaded MASH DDSM,
hereafter denoted NC-MASH, which offers identical behaviour
to the conventional MASH DDSM, but with a greatly in-
creased maximum clock speed. Specifically, the NC-MASH
pipelines the DDSM blocks in order to reduce the quantization
of each block, thereby dramatically reducing the latency, with
only a small increase in area. The theory governing the NC-
MASH 1-1-1 is presented as an example, and an efficient
implementation using adders is discussed. Finally, the trade-
off between maximum clock speed and area is discussed, with
synthesized examples confirming that the NC-MASH offers a
significant improvement over the conventional MASH.

The paper begins with an overview of the conventional
MASH DDSM in Section II, demonstrating where the speed
bottleneck occurs. The NC-MASH is described briefly in
Section III, which is followed by the theory governing the
NC-MASH 1-1-1 in Section IV. Section V addresses efficient
implementation of the NC-MASH, while Section VI demon-
strates the synthesized performance and discusses speed-area
tradeoffs, before a final discussion is given in Section VII.

II. CONVENTIONAL MASH DDSM

The Digital Delta-Sigma Modulator (DDSM) is a noise-
shaping modulator which consists of a quantizer with a 1-bit
output1 in a feedback loop, as shown in Fig. 1(a). An error
signal, e, is fed back to the input, resulting in +20dB/decade

1The quantizer may quantize to more than one bit, but we consider only the
1-bit case in this work. The ideas presented herein can be readily extended
to the case of a multibit quantizer.
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Fig. 1: (a) Diagram of first-order DDSM. (b) First-order
DDSM implemented using an adder with carry out.

Fig. 2: Schematic of a MASH 1-1-1, where the individual
DDSM stages are as shown in Fig. 1.

noise shaping from accumulation of the error. Due to the m-
bit quantization, the output mean is attenuated by a factor of
M = 2m compared to the input. Thus:

Y (z) =
z−1

M
X(z)− z−1

(
1− z−1

)
E(z) (1)

where Y , X and E denote the z-transforms of the output y,
input x and error e, respectively.

The first-order DDSM block with a 1-bit output can be
easily implemented using an m-bit adder, where the sum and
carry out are equivalent to the modulator error and output,
respectively, as shown in Fig. 1(b).

The MASH DDSM is a development of the DDSM which
employs a number of quantization stages to successively
increase the noise shaping of the error term. Fig. 2 shows
a MASH 1-1-1, which consists of three first-order DDSMs,
and a feedback network implementing the following function:

Y (z) = z−2Y1(z) + z−1
(
1− z−1

)
Y2(z)

+
(
1− z−1

)2
Y3(z) (2)

The error term is fed to a second DDSM, whose output
therefore contains the error term in addition to a new error
term. The second DDSM’s output is accumulated and added to
the first DDSM’s output in the feedback network, cancelling
the original error term and leaving behind the second error
term. Likewise, the second error term is fed into a third
DDSM, after which it also is cancelled, leaving behind a third
error term. This error term has +60dB/decade noise shaping,
due to the effect of the three feedback loops, which results in
less in-band noise after low-pass filtering.

Fig. 3: Schematic of 2-level Nested Cascaded MASH 1-1-1.

A higher-order MASH can be created using additional first-
order DDSM blocks, if higher-order noise shaping is desired.
An Lth-order MASH will therefore have an L-bit output.

III. NESTED CASCADED MASH

Increased precision in the output mean of the DDSM can
be achieved by increasing the width of the quantizer, thus
increasing both the width of the input word and the attenuation
of the DDSM. However, this comes with a speed penalty as
the latency of the loop is related to the width of the quantizer.
Qualitatively, the greater the widths of the words, the longer
it takes to add them together.

The MASH modulator achieves higher-order noise shaping
by using additional DDSMs to requantize the error term.
The NC-MASH takes a similar approach, and uses additional
DDSMs to requantize the output term, as shown in Fig. 3.
For a given overall MASH attenuation, increasing the number
of individual DDSMs in the structure reduces the required
bitwidth of each DDSM, thereby reducing the delay of each
DDSM, and therefore the maximum clock frequency is greatly
increased with only a minimal area increase. The greater the
number of levels in the cascade, the faster the clock can be.

IV. THEORY

For the purposes of illustration, we discuss the operation
of the NC-MASH 1-1-1 in detail. This analysis can easily be
extended to other types of NC-MASH by adding or removing
terms in Eqs. (9) and (10), and modifying Eq. (11).

A. Two-level NC-MASH 1-1-1

The two-level NC-MASH replaces the chain of DDSM
blocks in Fig. 2 with two levels of blocks, each with their
own respective inputs x1 and x2, as shown in Fig. 3. The
output of the DDSM blocks of the first level, shown in green,
are fed into the inputs of the respective DDSM blocks of the
second level, shown in red.

It can be shown that the error terms of all but the
last stage of each level are cancelled, and the output has



a +60dB/decade noise-shaped term, as in the traditional
MASH 1-1-1. At level two:

Y2,1(z) =
z−1

M2
X2(z)− z−1

(
1− z−1

)
E2,1(z) (3)

Y2,2(z) = z−1E2,1(z)− z−1
(
1− z−1

)
E2,2(z) (4)

Y2,3(z) = z−1E2,2(z)− z−1
(
1− z−1

)
E2,3(z) (5)

At level one:

Y1,1(z) =
z−1

M1
(Y2,1(z) +X1(z))

− z−1
(
1− z−1

)
E1,1(z) (6)

Y1,2(z) = z−1 (Y2,2(z) + E1,1(z))

− z−1
(
1− z−1

)
E1,2(z) (7)

Y1,3(z) = z−1 (Y2,3(z) + E1,2(z))

− z−1
(
1− z−1

)
E1,3(z) (8)

Substituting (3)–(5) into (6)–(8), and combining (6)–(8) ac-
cording to (2), we obtain:

Y (z) =
z−3

M1
X1(z) +

z−4

M1M2
X2(z)

−
(
1− z−1

)3(
z−1E1,3(z) +

z−2

M1
E2,3(z)

)
(9)

If the desired output mean is given by x/(M1M2), then x1

and x2 should be chosen such that x = x1M2 + x2.

B. Four-level NC-MASH 1-1-1

Further clock speed increases can be achieved by increasing
the number of cascaded levels, thereby reducing the width, and
therefore latency, of each DDSM stage.

In the four-level implementation shown in Fig. 4, expres-
sions for the Y4,y terms can be derived from (3)–(5), and
expressions for the other Yx,y terms can be derived from (6)–
(8). Combining as before, we obtain:

Y (z) =
z−3

M1
X1(z) +

z−4

M1M2
X2(z)

+
z−5

M1M2M3
X3(z) +

z−6

M1M2M3M4
X4(z)

−
(
1− z−1

)3(
z−1E1,3(z) +

z−2

M1
E2,3(z)

+
z−3

M1M2
E3,3(z) +

z−4

M1M2M3
E4,3(z)

)
(10)

C. Fine-grained NC-MASH 1-1-1

The above analysis can easily be extended to N levels of
cascading, as follows:

Y (z) =

N∑
k=1

(
z−(2+k)∏k
n=1 Mn

)
Xk(z)

−
(
1− z−1

)3( N∑
k=1

(
z−k∏k−1
n=1 Mn

)
Ek,3

)
(11)

where, for a desired output mean of x/(
∏N

q=1 Mq), the inputs
should be chosen such that:

x =

N∑
p=1

(
xp

N∏
q=p+1

Mq

)
(12)

D. Quantization noise in the NC-MASH

A key feature of the MASH is its high-pass shaped noise
profile. In the MASH 1-1-1, the only output modulation noise
is due to the quantization noise of the third stage, e3.

In the case of the NC-MASH, the quantization noise of the
last stage of each level, ek,3, contributes to the shaped output
noise term. This is not an issue as these terms are attenuated
by the successive DDSM stages; hence, in the 4-level example
given in Section IV-B, the amplitude of each term is given by
e1,3, e2,3/M1, e3,3/(M1M2), and e4,3/(M1M2M3). The ad-
ditional contributions from the e2,3 . . . e4,3 terms are therefore
negligible, and the noise performance of the NC-MASH is
effectively identical to that of the conventional MASH DDSM.

E. Dithering the NC-MASH

The DDSM is a finite state machine; therefore, the conven-
tional MASH suffers from periodic behaviour that can result
in spurs appearing on the output [8]–[11]. This unwanted
behaviour is also possible in the NC-MASH.

Several deterministic [11]–[13] and stochastic methods have
been suggested for overcoming this problem. Of the latter,
applying LFSR dither to LSBs of the inputs of the second
DDSM stage of the MASH 1-1-1 has been found to be the
most effective method [14], although care must be taken to
ensure that the periodicity of the LFSR does not itself produce
spurs [15]. More generally, Pamarti and Galton have shown
[16] that dither of the order (L− 1)th and greater will produce
spurs in an Lth-order MASH, although a small adjustment to
the DDSM structure will allow up to Lth-order dither [17].

Dithering can similarly be implemented in an N -level NC-
MASH by dithering the relevant DDSM in the N th level of
the cascade. Dithering of successive levels is only necessary
if a large number of levels is used, as the input from the
previous level is usually sufficiently randomized to break
up the periodicity. Stability is not a concern, as 1st-order
DDSMs are unconditionally stable, and the architecture is
feed-forward.

V. IMPLEMENTATION

DDSM latency can be minimized by implementing clocked
adders as first-order modulators. In this way, the y terms can
be applied to the carries in of the adders, thus minimizing the
area increase of the NC-MASH compared to a conventional
MASH.

In the design shown in Fig 3, and as seen in Equation (11),
there is a mismatched latency between each of the x inputs and
the output y, which results in incorrect performance when the
input word is not constant. This can be overcome by delaying
the inputs by a sufficient amount so that the latencies from
each input to the output are equal. In general, in an N -stage



Fig. 4: 4-level Nested Cascaded MASH 1-1-1 implementa-
tion. Inset: Schematic of DDSM accumulator, consisting of a
clocked m-bit adder, which has a latency of 1 clock period.

NC-MASH, this can be achieved by delaying each input xd

by
∑N

k=d+1 Lk clock cycles, where Lk is the latency of the
DDSMs in the kth level.

An implementation of a 4-stage NC-MASH is shown in Fig.
4, with one-bit white noise dither added to the second DDSM
stage of the fourth level to produce (L−2) = 1st-order shaped
dither.

VI. PERFORMANCE

The NC-MASH is characterized by a trade-off between area
and speed, as the reduction in worst-case delay comes at the
expense of the additional flip flops that are required to store
the intermediate output and error signals.

In the conventional MASH, we can divide the area into four:
(i) the DDSM output flip flops, (ii) the DDSM feedback flip
flops, (iii) the DDSM adders and and (iv) the accumulation
network: AMASH = ADFF(y) + ADFF(e) + Aadd + Aacc. In
the N -level NC-MASH, the number of DDSMs is increased
by a factor of N ; however, the width of each adder is
also decreased by a factor of N . As a result, the area of
the adders and feedback flip flops remain roughly constant,
and only the number of output flip flops increases. Hence,
ANC-MASH ' NADFF(y) + ADFF(e) + Aadd + Aacc. The area
increase can therefore be estimated using:

ANC-MASH '
(
AMASH −ADFF(y)

)
+NADFF(y). (13)

Similarly, the worst-case delay of a DDSM block, imple-
mented as a clocked adder, can be divided into the delay
through all adder stages and the delay due to the output flip
flop: DMASH = DDFF(y) + Dadd. In the N -stage NC-MASH,
if we assume that N is a factor of the overall modulator bit
width m, the width of each DDSM block is reduced by a
factor of N ; therefore DNC-MASH ' DDFF(y) + Dadd/N . The
delay reduction can therefore be estimated using:

DNC-MASH ' (DMASH −Dadd) +

(
1

N

)
Dadd. (14)
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Fig. 5: Trade-off in the Nested Cascaded MASH 1-1-1 between
performance (worst-case DDSM delay) and area, for various
levels of cascading. Dashed curves show the fitted functions
a + b/N and a + bN , respectively, where N is the level
of cascading. Synthesis results (circles and squares) were
obtained using Cadence Genus.

In the more general case, if N is not a factor of m, then the
worst-case DDSM delay can be shown to be equal to:

DNC-MASH ' DDFF +
1

m

⌈m
N

⌉
Dadd, (15)

where dxe denotes the smallest integer greater than or equal
to x.

The worst-case delay can therefore be more generally esti-
mated as:

DNC-MASH ' (DMASH −Dadd) +

(
1

m

⌈m
N

⌉)
Dadd. (16)

Note that the delay improvement relative to area is maximized
when N is a factor of m.

From (13) and (14) it is clear that, since the flip flop
area is a small component of the overall area, and the adder
latency comprises the majority of the DDSM delay, the NC-
MASH offers a substantial speed improvement for a minimal
area increase. Fig. 5 shows the estimated worst-path delay
and area for a 16-bit conventional MASH 1-1-1 (N = 1)
and 16-bit NC-MASH 1-1-1 (N = 2, 4, 8), normalised to
the conventional MASH. Representative structures have been
synthesized using Cadence Genus, using a 160 nm process and
a timing-driven flow. The corresponding areas and delays are
denoted by squares and circles. Appropriate curves derived
from (13) and (14) are fitted. With four levels of cascading,
the maximum clock speed increases threefold, compared to
the conventional MASH, for an area increase of only 8.6%.

VII. CONCLUSION

A Nested Cascaded MASH has been presented that offers
identical spectral performance to the conventional MASH, but
features a greatly increased maximum clock speed with a mini-
mal area penalty. These improvements have been demonstrated



using synthesized RTL. This makes the NC-MASH a very
interesting drop-in replacement for the conventional MASH
DDSM.
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