Probing dipole and quadrupole resonance mode in non-plasmonic nanowire using Raman spectroscopy

Loading...
Thumbnail Image
Date
2020-07-24
Authors
Raha, Sreyan
Mitra, Sreemanta
Kumar Mondal, Prasanna
Biswas, Subhajit
Holmes, Justin D.
Singha, Achintya
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Research Projects
Organizational Units
Journal Issue
Abstract
Electric field enhancement in semiconductor nanostructures offers a possibility to find an alternative to the metallic particles which is well known for tuning the light-matter interaction due to its strong polarizability and size-dependent surface plasmon resonance energy. Raman spectroscopy is a powerful technique to monitor the electric field as its scattering depends on the electromagnetic eigenmode of the particle. Here, we observe enhanced polarized Raman scattering from germanium nanowires of different diameters. The incident electromagnetic radiation creates a distribution of the internal electric field inside the naowires which can be enhanced by manipulating the nanowire diameter, the incident electric field and its polarization. Our estimation of the enhancement factor, including its dependence on nanowire diameter, agrees well with the Mie theory for an infinite cylinder. Furthermore, depending on diameter of nanowire and wavelength of incident radiation, polarized Raman study shows dipolar (antenna effect) and quadrupolar resonances, which has never been observed in germanium nanowire. We attempt to understand this polarized Raman behavior using COMSOL Multiphysics simulation, which suggests that the pattern observed is due to photon confinement within the nanowires. Thus, the light scattering direction can be toggled by tuning the polarization of incident excitation and diameter of non plasmonic nanowire.
Description
Keywords
Single molecule detection , Semiconductor nanowires , Silicon , Scattering , Nanoparticles , Germanium , Phonon , Electric field enhancement , Polarized raman scattering , Dipolar and quadrupolar resonances , Non-plasmonic nanowire
Citation
Raha, S., Mitra, S., Kumar Mondal, P., Biswas, S., D Holmes, J. and Singha, A. (2020) 'Probing dipole and quadrupole resonance mode in non-plasmonic nanowire using Raman spectroscopy', Nanotechnology, 31(42), 425201 (6 pp). doi: 10.1088/1361-6528/ab9cf9