Measurements of nonequilibrium interatomic forces using time-domain x-ray scattering

Show simple item record Teitelbaum, Samuel W. Henighan, Thomas C. Liu, Hanzhe Jiang, Mason P. Zhu, Diling Chollet, Matthieu Sato, Takahiro Murray, Éamonn D. Fahy, Stephen B. O'Mahony, Shane Bailey, Trevor P. Uher, Ctirad Trigo, Mariano Reis, David A. 2021-12-07T16:39:02Z 2021-12-07T16:39:02Z 2021-05-18
dc.identifier.citation Teitelbaum, S. W., Henighan, T. C., Liu, H., Jiang, M. P., Zhu, D., Chollet, M., Sato, T., Murray, E. D., Fahy, S. B., O’Mahony, S., Bailey, T. P., Uher, C., Trigo, M. and Reis, D. A. (2021) 'Measurements of nonequilibrium interatomic forces using time-domain x-ray scattering', Physical Review B, 103(3), L180101 (6pp). doi: 10.1103/PhysRevB.103.L180101 en
dc.identifier.volume 103 en
dc.identifier.issued 3 en
dc.identifier.startpage 1 en
dc.identifier.endpage 6 en
dc.identifier.issn 1098-0121
dc.identifier.doi 10.1103/PhysRevB.103.L180101 en
dc.description.abstract We demonstrate an experimental approach to determining the excited-state interatomic forces using femtosecond x-ray pulses from an x-ray free-electron laser. We determine experimentally the excited-state interatomic forces that connect photoexcited carriers to the nonequilibrium lattice dynamics in the prototypical Peierls-distorted material, bismuth. The forces are obtained by a constrained least-squares fit of a pairwise interatomic force model to the excited-state phonon dispersion relation as measured by the time- and momentum-resolved x-ray diffuse scattering. We find that photoexcited carriers weaken predominantly the nearest-neighbor forces, which drives the measured softening of the transverse acoustic modes throughout the Brillouin zone as well as the zone-center A1g optical mode. This demonstrates a bond-selective approach to measuring electron-phonon coupling relevant to a broad range of photoinduced phase transitions and transient light-driven states in quantum materials. en
dc.description.sponsorship Division of Materials Sciences and Engineering (Contract No. DE-AC02-76SF00515); U.S. Department of Energy, Office of Basic Energy Sciences (Award No. DE-SC-0008574); Irish Research Council (Award No. GOIPG/2015/2784) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Physical Society en
dc.rights © 2021, American Physical Society. All rights reserved. en
dc.subject Electron-phonon coupling en
dc.subject Peierls transition en
dc.subject Phonons en
dc.subject Structural phase transition en
dc.subject Ultrafast optics en
dc.subject X-ray scattering en
dc.subject X-ray lasers en
dc.subject Nonequilibrium systems en
dc.subject Semimetals en
dc.subject Synchrotron radiation & free-electron lasers en
dc.subject Photoexcitation en
dc.subject Ultrafast pump-probe spectroscopy en
dc.title Measurements of nonequilibrium interatomic forces using time-domain x-ray scattering en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Stephen B. Fahy, Physics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Irish Research Council en
dc.contributor.funder Office of Science en
dc.contributor.funder U.S. Department of Energy en
dc.contributor.funder Basic Energy Sciences en
dc.contributor.funder Division of Materials Sciences and Engineering en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical review B: Condensed matter and materials physics en
dc.internal.IRISemailaddress en
dc.identifier.articleid L180101 en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/12/IA/1601/IE/Ultrafast energy dissipation in semimetals and semiconductors: Simulation based on first-principles electronic structure theory/ en
dc.identifier.eissn 1550-235X

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement