MXene nanosheet/organics superlattice for flexible thermoelectrics
Wang, Zhiwen; Chen, Mengran; Cao, Zhining; Liang, Jia; Liu, Zhenguo; Xuan, Yuxue; Pan, Lin; Razeeb, Kafil M.; Wang, Yifeng; Wan, Chunlei; Zong, Peng-an
Date:
2022-11-01
Copyright:
© 2022, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Nano Materials, after technical editing by the publisher. To access the final edited and published work see: https://doi.org/10.1021/acsanm.2c03813
Full text restriction information:
Access to this article is restricted until 12 months after publication by request of the publisher.
Restriction lift date:
2023-11-01
Citation:
Wang, Z., Chen, M., Cao, Z., Liang, J., Liu, Z., Xuan, Y., Pan, L., Razeeb, K. M., Wang, Y., Wan, C. and Zong, P. (2022) 'MXene nanosheet/organics superlattice for flexible thermoelectrics', ACS Applied Nano Materials. doi: 10.1021/acsanm.2c03813
Abstract:
Two-dimensional (2D) materials with outstanding electronic transport properties are rigid against bending because of strong in-plane covalent bonding and intrinsically flexible because of the lack of out-of-plane constraint and thus are considered to be promising for flexible thermoelectrics (TEs). As a typical 2D material, MXene, however, exhibited a restricted TE performance because the termination groups and guest molecules in MXene nanosheets introduced by acid etching and reassembly deteriorate intra/interflake conduction. This work realized increases in both the carrier concentration and intra/interflake mobility by the construction of a MXene nanosheet/organic superlattice (SL) and composition engineering, attributed to electron injection, intercoupling strengthening, and defect reduction at the nanosheet edges. An electrical conductivity increased by 5 times, to 2.7 × 105 S m–1, led to power factors of up to ∼33 μW m–1 K–2, which is above the state-of-the-art for similar materials, almost by a factor of 10. A TE module comprising four SL film legs could yield 58.6 nW power at a temperature gradient of 50 K. Additionally, both the annealed film and the corresponding module exhibited excellent reproducibility and stability. Our results provide a strategy to tailor the TE performance of 2D-material films through SL construction and composition engineering.
Show full item record