A novel activation mechanism for Clostridial bacteriophage endolysins

Loading...
Thumbnail Image
Date
2014
Authors
Dunne, Matthew Stephen
Journal Title
Journal ISSN
Volume Title
Publisher
University College Cork
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
Bacteriophage-encoded endolysins are produced at the end of the phage lytic cycle for the degradation of the host bacterial cell. Endolysins offer the potential as alternatives to antibiotics as biocontrol agents or therapeutics. The lytic mechanisms of three bacteriophage endolysins that target Clostridium species living under different conditions were investigated. For these endolysins a trigger and release mechanism is proposed for their activation. During host lysis, holin lesion formation suddenly permeabilises the membrane which exposes the cytosol-sequestered endolysins to a sudden environmental shock. This shock is suggested to trigger a conformational switch of the endolysins between two distinct dimer states. The switch between dimer states is proposed to activate a novel autocleavage mechanism that cleaves the linker connecting the N-terminal catalytic domain and the C-terminal domain to release the catalytic domain for more efficient digestion of the bacterial cell wall. Crystal structures of cleaved fragments of CD27L and CTP1L were previously obtained. In these structures cleavage occurs at the stem of the linker connected to the C-terminal domain. Despite a sequence identity of only 22% between 81 residues of the C-terminal domains of CD27L and CTP1L, they represent a novel fold that is identified in a number of different lysins. Within the crystal structures the two distinct dimerization modes are represented: the elongated head‐on dimer and the side-by‐side dimer. Introducing mutations that inhibit either of the dimerization states caused a decrease in the efficiency of both the autocleavage mechanism and the lytic activity of the endolysins. The two dimer states were validated for the full-length endolysins in solution by using right angle light scattering, small angle X‐ray scattering and cross-linking experiments. Overall, the data represents a new type of regulation governed by the C-terminal domains that is used to activate these endolysins once they enter the bacterial cell wall.
Description
Keywords
Endolysin , Bacteriophage , Crystallography , Clostridia , Small angle x-ray scattering , Activation mechanism
Citation
Dunne, M. S. 2014. A novel activation mechanism for Clostridial bacteriophage endolysins. PhD Thesis, University College Cork.