Citation:VARGHESE, J., GHOSHAL, T., DEEPAK, N., O’REGAN, C., WHATMORE, R. W., MORRIS, M. A. & HOLMES, J. D. 2013. Fabrication of Arrays of Lead Zirconate Titanate (PZT) Nanodots via Block Copolymer Self-Assembly. Chemistry of Materials, 25, 1458-1463. http://dx.doi.org/10.1021/cm303759r
This Article presents a simple methodology for the fabrication of two-dimensional arrays of lead zirconate titanate (PZT) nanodots on n-doped Si substrates via the directed self-assembly of PS-b-PEO block copolymer templates. The approach produces highly ordered PZT nanodot patterns, with lateral widths and heights as small as 20 and 10 nm, respectively, and a coverage density as high as ∼68 × 109 nanodots cm–2. The existence of a perovskite phase in the nanodots was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. The piezo-amplitude and ferroelectric domain response obtained from the nanodots, through piezoresponse force microscopy, confirmed the presence of ferroelectricity in the PZT arrays. Notably, PZT nanodots with a thickness ∼10 nm, which is close to the critical size limit of PZT, showed ferroelectric behavior. The presence of a multi-a/c domain structure in the nanodots was attributed to their polycrystalline nature.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement