Hybrid density functional theory description of N- and C-doping of NiO

Show simple item record

dc.contributor.author Nolan, Michael
dc.contributor.author Long, R.
dc.contributor.author English, N. J.
dc.contributor.author Mooney, D. A.
dc.date.accessioned 2016-07-21T15:40:26Z
dc.date.available 2016-07-21T15:40:26Z
dc.date.issued 2011-06-10
dc.identifier.citation Nolan, M., Long, R., English, N. J., Mooney, D. A. (2011) 'Hybrid density functional theory description of N- and C-doping of NiO', Journal of Chemical Physics, 134, 224703. http://dx.doi.org/10.1063/1.3596949 en
dc.identifier.volume 134 en
dc.identifier.startpage 224703 (1) en
dc.identifier.endpage 224703 (9) en
dc.identifier.uri http://hdl.handle.net/10468/2919
dc.identifier.doi 10.1063/1.3596949
dc.description.abstract The large intrinsic bandgap of NiO hinders its potential application as a photocatalyst under visible-light irradiation. In this study, we have performed first-principles screened exchange hybrid density functional theory with the HSE06 functional calculations of N- and C-doped NiO to investigate the effect of doping on the electronic structure of NiO. C-doping at an oxygen site induces gap states due to the dopant, the positions of which suggest that the top of the valence band is made up primarily of C 2p-derived states with some Ni 3d contributions, and the lowest-energy empty state is in the middle of the gap. This leads to an effective bandgap of 1.7 eV, which is of potential interest for photocatalytic applications. N-doping induces comparatively little dopant-Ni 3d interactions, but results in similar positions of dopant-induced states, i.e., the top of the valence band is made up of dopant 2p states and the lowest unoccupied state is the empty gap state derived from the dopant, leading to bandgap narrowing. With the hybrid density functional theory (DFT) results available, we discuss issues with the DFT corrected for on-site Coulomb description of these systems. en
dc.description.sponsorship Science Foundation Ireland (Tyndall National Institute National Access Program (NAP) and the Starting Investigator Research Grant program, project “EMOIN” (Grant SFI 09/SIRG/I1620)). en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.rights © 2011, AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in M. Nolan et al. J. Chem. Phys. 134, 224703 (2011) and may be found at http://dx.doi.org/10.1063/1.3596949 en
dc.subject Doping en
dc.subject Nickel en
dc.subject Band gap en
dc.subject Density functional theory en
dc.subject Magnetic moments en
dc.subject Visible light irradiation en
dc.subject Solid state chemistry en
dc.subject Photocatalysis en
dc.subject Nitrogen en
dc.subject Absorption en
dc.title Hybrid density functional theory description of N- and C-doping of NiO en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2013-10-29T22:14:57Z
dc.description.version Accepted Version en
dc.internal.rssid 102259543
dc.internal.wokid 000291660200029
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Chemical Physics en
dc.internal.copyrightchecked Yes. !!CORA!! Yes en
dc.internal.licenseacceptance Yes en
dc.identifier.articleid 224703


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement