Supercapattery based on binder-free Co3 (PO4)2·8H2O multilayer nano/microflakes on nickel foam

Loading...
Thumbnail Image
Files
1393.pdf(2 MB)
Accepted Version
Date
2016-09-30
Authors
Shao, Han
Padmanathan, Narayanasamy
McNulty, David
O'Dwyer, Colm
Razeeb, Kafil M.
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society Publications
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
A binder-free cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/microflake structure is synthesized on nickel foam (NF) via a facile hydrothermal process. Four different concentrations (2.5, 5, 10, and 20 mM) of Co2+ and PO4–3 were used to obtain different mass loading of cobalt phosphate on the nickel foam. The Co3(PO4)2·8H2O modified NF electrode (2.5 mM) shows a maximum specific capacity of 868.3 C g–1 (capacitance of 1578.7 F g–1) at a current density of 5 mA cm–2 and remains as high as 566.3 C g–1 (1029.5 F g–1) at 50 mA cm–2 in 1 M NaOH. A supercapattery assembled using Co3(PO4)2·8H2O/NF as the positive electrode and activated carbon/NF as the negative electrode delivers a gravimetric capacitance of 111.2 F g–1 (volumetric capacitance of 4.44 F cm–3). Furthermore, the device offers a high specific energy of 29.29 Wh kg–1 (energy density of 1.17 mWh cm–3) and a specific power of 4687 W kg–1 (power density of 187.5 mW cm–3).
Description
Keywords
Cobalt phosphate hydrate , Electrochemical , Energy storage device , Nanomaterial , Supercapacitor , Supercapattery
Citation
Shao, H., Padmanathan, N., McNulty, D., O'Dwyer, C. and Razeeb, K. M. (2016) 'Supercapattery based on binder-free Co3 (PO4) 2· 8H2O multilayer nano/microflakes on nickel foam', ACS Applied Materials and Interfaces, 8(42), pp. 28592-28598. doi:10.1021/acsami.6b08354
Copyright
© 2016, American Chemical Society. This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials and Interfaces, copyright © American Chemical Society, after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acsami.6b08354