Tailoring asymmetric discharge-charge rates and capacity limits to extend Li-O2 battery cycle life

Show simple item record

dc.contributor.author Geaney, Hugh
dc.contributor.author O'Dwyer, Colm
dc.date.accessioned 2017-08-02T11:25:43Z
dc.date.available 2017-08-02T11:25:43Z
dc.date.issued 2017-01-27
dc.identifier.citation Geaney, H. and O'Dwyer, C. (2017) 'Tailoring asymmetric discharge-charge rates and capacity limits to extend Li-O2 battery cycle life', ChemElectroChem, 4, pp. 628-635. doi:10.1002/celc.201600662 en
dc.identifier.volume 4 en
dc.identifier.startpage 628 en
dc.identifier.endpage 635 en
dc.identifier.issn 2196-0216
dc.identifier.uri http://hdl.handle.net/10468/4417
dc.identifier.doi 10.1002/celc.201600662
dc.description.abstract Widespread issues with the fundamental operation and stability of Li-O2 cells impact cycle life and efficiency. While the community continues to research ways of mitigating side reactions and improving stability to realize Li-O2 battery prospects, we show that limiting the depth-of-discharge while unbalancing discharge/charge rate symmetry can extend Li-O2 battery cycle life by ensuring efficient reversible Li2O2 formation, markedly improving cycle life. Systematic variation of the discharge/charge currents shows that clogging from discharging the Li-O2 cell at high current (250 μA) can be somewhat negated by recharging with a lower applied current (50 μA), with a marked improvement in cycle life achievable. Our measurements determined that specific reduction of the depth of discharge in decrements from equivalent capacities of 1000 mAhg-1 to 50 mAhg-1 under symmetric discharge/charge currents of 50 μA strongly affected the cumulative discharge capacity of each cell. A maximum cumulative discharge capacity was found to occur at ~10 % depth of discharge (500 mAhg-1) and the cumulative discharge capacity of 39,500 mAhg-1 was significantly greater than cells operated at higher and lower depths of discharge. The results emphasize the importance of appropriate discharge/charge rate and depth of discharge selection for other cathode/electrolyte combinations for directly improving cycle life performances of Li-O2 batteries. en
dc.description.sponsorship Science Foundation Ireland (Grant Numbers: 13/TIDA/E2761 and 14/IA/2581) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher John Wiley & Sons, Inc. en
dc.rights © 2017, John Wiley & Sons, Inc. This is the peer reviewed version of the following article: Geaney, H. and O'Dwyer, C. (2017) 'Tailoring asymmetric discharge-charge rates and capacity limits to extend Li-O2 battery cycle life', ChemElectroChem, 4, pp. 628-635. doi:10.1002/celc.201600662, which has been published in final form at http://dx.doi.org/10.1002/celc.201600662 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. en
dc.subject Li-air battery en
dc.subject Li-O2 battery en
dc.subject Energy storage en
dc.subject Carbon nanotube en
dc.subject Cathode en
dc.subject Electrochemistry en
dc.title Tailoring asymmetric discharge-charge rates and capacity limits to extend Li-O2 battery cycle life en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Colm O'Dwyer, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: c.odwyer@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-08-02T11:09:46Z
dc.description.version Accepted Version en
dc.internal.rssid 389908599
dc.contributor.funder Seventh Framework Programme en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle ChemElectroChem en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress c.odwyer@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::NMP/314508/EU/STable high-capacity lithium-Air Batteries with Long cycle life for Electric cars/STABLE en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement