Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker

Show simple item record

dc.contributor.author Jackson, Nathan
dc.contributor.author Olszewski, Oskar Zbigniew
dc.contributor.author O'Murchu, Cian
dc.contributor.author Mathewson, Alan
dc.date.accessioned 2017-09-12T08:37:45Z
dc.date.available 2017-09-12T08:37:45Z
dc.date.issued 2017-08-03
dc.identifier.citation Jackson, N., Olszewski, O. Z., O'Murchu, C. and Mathewson, A. (2017) 'Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker', Sensors and Actuators A: Physical, 264, pp. 212-218. doi:10.1016/j.sna.2017.08.005 en
dc.identifier.volume 264 en
dc.identifier.startpage 212 en
dc.identifier.endpage 218 en
dc.identifier.issn 0924-4247
dc.identifier.uri http://hdl.handle.net/10468/4681
dc.identifier.doi 10.1016/j.sna.2017.08.005
dc.description.abstract The next generation of implantable leadless pacemakers will require vibrational energy harvesters in order to increase the lifetime of the pacemaker. This paper reports for the first time the use of a piezoelectric MEMS linear energy harvester device that fits inside a pacemaker capsule. The silicon based MEMS cantilever device uses CMOS compatible Aluminum Nitride as the piezoelectric layer. The developed harvester operates based on a shock-induced vibration that is generated from the low frequency (60–240 beats per minute) high acceleration (>1 g) vibration of the heart. The off-resonance, high g impulses force the high-frequency harvester to oscillate at its resonant frequency. A power density of 97 and 454 μW cm−3 g−2 was achieved for a heart rate of 60 and 240 beats per minute respectively. The forced oscillation causes the linear harvester to dampen after 100–200 ms which reduces the average power compared to a typical sinusoidal excitation. A two and four cantilever system occupies 35% and 70% of the overall volume of the capsule while obtaining 2.98 and 5.96 μW respectively at a heart rate of 60 bpm respectively and 1 g acceleration. The results in this paper demonstrate that a shock-induced linear MEMS harvester can produce enough electrical energy from the vibration of a heart to power a leadless pacemaker while maintaining a small volume. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier Ltd en
dc.rights © 2017, Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 en
dc.subject Aluminum nitride en
dc.subject Energy harvesting en
dc.subject MEMS en
dc.subject Pacemaker en
dc.subject Heart en
dc.subject Implantable en
dc.title Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Nathan Jackson, Tyndall Microsystems, University College Cork, Cork, Ireland. +353-21-490-3000 Email: nathan.jackson@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 24 months after publication by request of the publisher. en
dc.check.date 2019-08-03
dc.date.updated 2017-09-11T11:44:12Z
dc.description.version Accepted Version en
dc.internal.rssid 410647330
dc.contributor.funder Seventh Framework Programme en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Sensors and Actuators A: Physical en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress Nathan.jackson@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::NMP/604360/EU/MANpower - Energy Harvesting and Storage for Low Frequency Vibrations/MANPOWER en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2017, Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. Except where otherwise noted, this item's license is described as © 2017, Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement