Citation:Xu, J., Munari, A., Dalton, E., Mathewson, A. and Razeeb, K. M. (2009) 'Silver nanowire array-polymer composite as thermal interface material', Journal of Applied Physics, 106(12), 124310 (7pp). doi: 10.1063/1.3271149
Silver nanowire arrays embedded inside polycarbonate templates are investigated as a viable thermal interface material for electronic cooling applications. The composite shows an average thermal diffusivity value of 1.89x10(-5) m(2) s(-1), which resulted in an intrinsic thermal conductivity of 30.3 W m(-1) K(-1). The nanowires' protrusion from the film surface enables it to conform to the surface roughness to make a better thermal contact. This resulted in a 61% reduction in thermal impedance when compared with blank polymer. An similar to 30 nm Au film on the top of the composite was found to act as a heat spreader, reducing the thermal impedance further by 35%. A contact impedance model was employed to compare the contact impedance of aligned silver nanowire-polymer composites with that of aligned carbon nanotubes, which showed that the Young's modulus of the composite is the defining factor in the overall thermal impedance of these composites.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement