Origin of the asymmetric exchange bias in BiFeO3/Bi2Fe4O9 nanocomposite

Loading...
Thumbnail Image
Files
3952.pdf(682.08 KB)
Published Version
Date
2014-04-24
Authors
Maity, Tuhin
Goswami, Sudipta
Bhattacharya, Dipten
Roy, Saibal
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Research Projects
Organizational Units
Journal Issue
Abstract
We show from detailed magnetometry across 2-300 K that the BiFeO3-Bi2Fe4O9 nanocomposite offers a unique spin morphology where superspin glass (SSG) and dilute antiferromagnet in a field (DAFF) coexist at the interface between ferromagnetic Bi2Fe4O9 and antiferromagnetic BiFeO3. The coexisting SSG and DAFF combine to form a local spin texture, which gives rise to a path- dependent exchange bias below the spin freezing temperature (similar to 29 K). The exchange bias varies depending on the protocol or path followed in tracing the hysteresis loop. The exchange bias has been observed below the blocking temperature (T-B) 60 K of the superparamagnetic Bi2Fe4O9. The conventional exchange bias (CEB) increases nonmonotonically as temperature decreases. The magnitude of both exchange bias (H-E) and coercivity (H-C) increase with decrease in temperature and are found to be asymmetric below 20 K depending on the path followed in tracing the hysteresis loop and bias field. The local spin texture at the interface between ferromagnetic and antiferromagnetic particles generates a nonswitchable unidirectional anisotropy along the negative direction of the applied field. The influence of this texture also shows up in " asymmetric" jumps in the hysteresis loop at 2 K, which smears off at higher temperature. The role of the interface spin texture in yielding the path dependency of exchange bias is thus clearly delineated.
Description
Keywords
Anisotropy , Bilayers
Citation
Maity, T., Goswami, S., Bhattacharya, D. and Roy, S. (2014) 'Origin of the asymmetric exchange bias in BiFeO3/Bi2Fe4O9 nanocomposite', Physical Review B, 89(14), 140411 (5pp). doi:10.1103/PhysRevB.89.140411
Copyright
© 2014, American Physical Society. All rights reserved.