Optical photometry and spectroscopy of the accretion-powered millisecond pulsar HETE J1900.1-2455

Show simple item record

dc.contributor.author Elebert, Patrick
dc.contributor.author Callanan, Paul J.
dc.contributor.author Filippenko, A. V.
dc.contributor.author Garnavich, P. M.
dc.contributor.author Mackie, G.
dc.contributor.author Hill, J. M.
dc.contributor.author Burwitz, V.
dc.date.accessioned 2017-11-07T09:38:57Z
dc.date.available 2017-11-07T09:38:57Z
dc.date.issued 2008
dc.identifier.citation Elebert, P., Callanan, P. J., Filippenko, A. V., Garnavich, P. M., Mackie, G., Hill, J. M. and Burwitz, V. (2008) 'Optical photometry and spectroscopy of the accretion-powered millisecond pulsar HETE J1900.1 − 2455', Monthly Notices of the Royal Astronomical Society, 383(4), pp. 1581-1587. doi: 10.1111/j.1365-2966.2007.12667.x en
dc.identifier.volume 383
dc.identifier.issued 4
dc.identifier.startpage 1581
dc.identifier.endpage 1587
dc.identifier.issn 0035-8711
dc.identifier.uri http://hdl.handle.net/10468/4978
dc.identifier.doi 10.1111/j.1365-2966.2007.12667.x
dc.description.abstract We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1-2455. Our R-band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Ha emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s(-1), placing a lower limit of 0.05 M-circle dot on the secondary mass. For a 1.4 M-circle dot primary, this implies that the orbital inclination is low, less than or similar to 20 degrees. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be similar to 0.085 M-circle dot, which implies an upper limit of similar to 2.4 M-circle dot for the primary mass. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Oxford University Press en
dc.relation.uri https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2007.12667.x
dc.rights © 2007, the Authors. Journal compilation © 2007, RAS en
dc.subject Accretion en
dc.subject Accretion discs en
dc.subject Techniques en
dc.subject Photometric en
dc.subject Techniques en
dc.subject Spectroscopic en
dc.subject Pulsars en
dc.subject Individual en
dc.subject HETE J1900 en
dc.subject 1-2455 en
dc.subject X-rays en
dc.subject Binaries en
dc.title Optical photometry and spectroscopy of the accretion-powered millisecond pulsar HETE J1900.1-2455 en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Patrick Elebert, Physics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: p.elebert@ucc.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Science Foundation Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle Monthly Notices of the Royal Astronomical Society en
dc.internal.IRISemailaddress p.elebert@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement