Evidence for cospatial optical and radio polarized emission in active galactic nuclei

Thumbnail Image
3891.pdf(342.64 KB)
Published Version
Gabuzda, Denise
Rastorgueva, E. A.
Smith, P. S.
O'Sullivan, S. P.
Journal Title
Journal ISSN
Volume Title
Oxford University Press
Research Projects
Organizational Units
Journal Issue
We investigate the relationship between the optical and radio emission of active galactic nuclei (AGN) by analysing optical and 15+22+43 GHz Very Long Baseline Array (VLBA) polarization observations simultaneous to within a day for 11 BL Lacertae (BL Lac) objects and the blazar 3C279. We have determined and corrected for the Faraday rotation measures in the very long baseline interferometry (VLBI) cores, enabling us to compare the intrinsic (zero-wavelength) VLBI-core polarization angles and the optical polarization angles chi(opt). A clear alignment between these two angles emerges in the transition toward higher radio frequencies, and a prominent peak at 0 degrees is visible in the distribution of |chi(opt) - chi(43 GHz)|. This correlation implies that the magnetic-field orientations in the regions giving rise to the optical and radio polarization are the same, and can be easily understood if the radio and optical polarization are roughly cospatial. It is difficult to rule out the possibility that they arise in different regions in a straight jet with a uniform magnetic-field structure, but this seems less likely, since the VLBI jets of AGN are often bent on parsec-scales. This may suggest that much or all of the strong optical polarization in these sources arises in the inner radio jets, possibly associated with the formation and emergence of compact new VLBI components.
Polarization , Galaxies , Active , Fields , Jets
Gabuzda, D. C., Rastorgueva, E. A., Smith, P. S. and O'Sullivan, S. P. (2006) 'Evidence for cospatial optical and radio polarized emission in active galactic nuclei', Monthly Notices of the Royal Astronomical Society, 369(4), pp. 1596-1602. doi: 10.1111/j.1365-2966.2006.10433.x
© 2006, the Authors. Journal compilation © 2006, RAS