Evidence for cospatial optical and radio polarized emission in active galactic nuclei

Show simple item record

dc.contributor.author Gabuzda, Denise
dc.contributor.author Rastorgueva, E. A.
dc.contributor.author Smith, P. S.
dc.contributor.author O'Sullivan, S. P.
dc.date.accessioned 2017-11-07T09:38:58Z
dc.date.available 2017-11-07T09:38:58Z
dc.date.issued 2006
dc.identifier.citation Gabuzda, D. C., Rastorgueva, E. A., Smith, P. S. and O'Sullivan, S. P. (2006) 'Evidence for cospatial optical and radio polarized emission in active galactic nuclei', Monthly Notices of the Royal Astronomical Society, 369(4), pp. 1596-1602. doi: 10.1111/j.1365-2966.2006.10433.x en
dc.identifier.volume 369
dc.identifier.issued 4
dc.identifier.startpage 1596
dc.identifier.endpage 1602
dc.identifier.issn 0035-8711
dc.identifier.uri http://hdl.handle.net/10468/4984
dc.identifier.doi 10.1111/j.1365-2966.2006.10433.x
dc.description.abstract We investigate the relationship between the optical and radio emission of active galactic nuclei (AGN) by analysing optical and 15+22+43 GHz Very Long Baseline Array (VLBA) polarization observations simultaneous to within a day for 11 BL Lacertae (BL Lac) objects and the blazar 3C279. We have determined and corrected for the Faraday rotation measures in the very long baseline interferometry (VLBI) cores, enabling us to compare the intrinsic (zero-wavelength) VLBI-core polarization angles and the optical polarization angles chi(opt). A clear alignment between these two angles emerges in the transition toward higher radio frequencies, and a prominent peak at 0 degrees is visible in the distribution of |chi(opt) - chi(43 GHz)|. This correlation implies that the magnetic-field orientations in the regions giving rise to the optical and radio polarization are the same, and can be easily understood if the radio and optical polarization are roughly cospatial. It is difficult to rule out the possibility that they arise in different regions in a straight jet with a uniform magnetic-field structure, but this seems less likely, since the VLBI jets of AGN are often bent on parsec-scales. This may suggest that much or all of the strong optical polarization in these sources arises in the inner radio jets, possibly associated with the formation and emergence of compact new VLBI components. en
dc.description.sponsorship National Aeronautics and Space Administration/Jet Propulsion Laboratory (1256424)
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Oxford University Press en
dc.relation.uri https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2006.10433.x
dc.rights © 2006, the Authors. Journal compilation © 2006, RAS en
dc.subject Polarization en
dc.subject Galaxies en
dc.subject Active en
dc.subject Fields en
dc.subject Jets en
dc.title Evidence for cospatial optical and radio polarized emission in active galactic nuclei en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Denise Gabuzda, Physics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: d.gabuzda@ucc.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Jet Propulsion Laboratory
dc.contributor.funder National Aeronautics and Space Administration
dc.description.status Peer reviewed en
dc.identifier.journaltitle Monthly Notices of the Royal Astronomical Society en
dc.internal.IRISemailaddress d.gabuzda@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement