Lithographically defined, room temperature low threshold subwavelength red-emitting hybrid plasmonic lasers

Show simple item record Liu, Ning Gocalińska, Agnieszka M. Justice, John Gity, Farzan Povey, Ian M. McCarthy, Brendan Pemble, Martyn E. Pelucchi, Emanuele Wei, Hong Silien, Christophe Xu, Hongxing Corbett, Brian M. 2017-12-01T15:51:06Z 2017-12-01T15:51:06Z 2016-11-29
dc.identifier.citation Liu, N., Gocalinska, A., Justice, J., Gity, F., Povey, I., McCarthy, B., Pemble, M., Pelucchi, E., Wei, H., Silien, C., Xu, H. and Corbett, B. (2016) 'Lithographically Defined, Room Temperature Low Threshold Subwavelength Red-Emitting Hybrid Plasmonic Lasers', Nano Letters, 16(12), pp. 7822-7828. doi: 10.1021/acs.nanolett.6b04017 en
dc.identifier.volume 16 en
dc.identifier.issued 12 en
dc.identifier.startpage 7822 en
dc.identifier.endpage 7828 en
dc.identifier.issn 1530-6984
dc.identifier.doi 10.1021/acs.nanolett.6b04017
dc.description.abstract Hybrid plasmonic lasers provide deep subwavelength optical confinement, strongly enhanced light–matter interaction and together with nanoscale footprint promise new applications in optical communication, biosensing, and photolithography. The subwavelength hybrid plasmonic lasers reported so far often use bottom-up grown nanowires, nanorods, and nanosquares, making it difficult to integrate these devices into industry-relevant high density plasmonic circuits. Here, we report the first experimental demonstration of AlGaInP based, red-emitting hybrid plasmonic lasers at room temperature using lithography based fabrication processes. Resonant cavities with deep subwavelength 2D and 3D mode confinement of λ2/56 and λ3/199, respectively, are demonstrated. A range of cavity geometries (waveguides, rings, squares, and disks) show very low lasing thresholds of 0.6–1.8 mJ/cm2 with wide gain bandwidth (610 nm-685 nm), which are attributed to the heterogeneous geometry of the gain material, the optimized etching technique, and the strong overlap of the gain material with the plasmonic modes. Most importantly, we establish the connection between mode confinements and enhanced absorption and stimulated emission, which plays critical roles in maintaining low lasing thresholds at extremely small hybrid plasmonic cavities. Our results pave the way for the further integration of dense arrays of hybrid plasmonic lasers with optical and electronic technology platforms. en
dc.description.sponsorship Science Foundation Ireland (National Access Programme (No. 444)); Ministry of Science and Technology of the People's Republic of China (Grant No. 2015CB932400); National Natural Science Foundation of China (Grant Nos. 11134013 and 11227407) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Chemical Society en
dc.rights © 2016 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see en
dc.subject AlGaInP heterostructures en
dc.subject Enhanced stimulated emission en
dc.subject Plasmonic lasers en
dc.subject Purcell effect en
dc.subject Top-down lithography en
dc.title Lithographically defined, room temperature low threshold subwavelength red-emitting hybrid plasmonic lasers en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Brian Corbett, Tyndall Ceo, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2017-12-01T15:38:56Z
dc.description.version Accepted Version en
dc.internal.rssid 419812399
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Ministry of Science and Technology of the People's Republic of China en
dc.contributor.funder National Natural Science Foundation of China en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Nano Letters en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2276/IE/I-PIC Irish Photonic Integration Research Centre/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/10/IN.1/I3000/IE/Controlling deterministically engineered III-V nanostructures: towards quantum information devices/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/11/PI/1117/IE/New Materials and Devices for Optical Applications via the use of Hybrid Technologies: Colloidal Crystallisation and Advanced Thin Film Deposition/ en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement