Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses

Show simple item record

dc.contributor.author Zeglinski, Jacek
dc.contributor.author Nolan, Michael
dc.contributor.author Bredol, Michael
dc.contributor.author Schatte, Andrea
dc.contributor.author Tofail, Syed A. M.
dc.date.accessioned 2017-12-18T16:37:03Z
dc.date.available 2017-12-18T16:37:03Z
dc.date.issued 2012-01-19
dc.identifier.citation Zeglinski, J., Nolan, M., Bredol, M., Schatte, A. and Tofail, S. A. M. (2012) 'Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses', Physical Chemistry Chemical Physics, 14(10), pp. 3435-3443. doi:10.1039/c2cp23163h en
dc.identifier.volume 14 en
dc.identifier.startpage 3435 en
dc.identifier.endpage 3443 en
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10468/5191
dc.identifier.doi 10.1039/c2cp23163h
dc.description.abstract Strontium can be substituted into the calcium sublattice of hydroxyapatite without a solubility limit. However, recent ab initio simulations carried out at 0 K report endothermic nature of this process. There is also striking discrepancy between experimentally observed preference of Sr doping at Ca-II sites and the first principles calculations, which indicate that a Ca-I site is preferred energetically for the Sr substitution. In this paper we combine insights from Density Functional Theory simulations and regular configurational entropy calculations to determine the site preference of Sr doping in the range of 0-100 at% at finite temperatures. In addition, samples of Sr-HA are synthesized and refinement of the relevant structural information provides benchmark information on the experimental unit cell parameters of Sr-HA. We find that the contribution of the entropy of mixing can efficiently overcome the endothermic excess energy at a temperature typical of the calcining step in the synthesis route of hydroxyapatite (700-950 degrees C). We observe that the most preferential substitution pattern is mixed substitution of Sr regardless of the concentration. For a wet chemical method, carried out at a moderate temperature (90 degrees C), the mixed doping is still slightly favourable at higher Sr-concentrations, except the range at 20% Sr, where Site II substitution is not restricted energetically and equally possible as the mixed doping. We observe a close correspondence between our theoretical results and available experimental data. Hence it should be possible to apply this theory to other divalent dopants in HA, such as Zn2+, Mg2+, Pb2+, Cu2+, Ba2+, Cd2+ etc. en
dc.description.sponsorship European Commission (Bilateral Socrates-Erasmus Exchange Programme between University of Limerick and University of Münster); Science Foundation Ireland and Higher Education Authority (Irish Centre for High Performance Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry en
dc.rights © the Owner Societies 2012. This is the accepted manuscript version of an article published in Physical Chemistry Chemical Physics. The version of record is available at http://dx.doi.org/10.1039/C2CP23163H en
dc.subject Total-energy calculations en
dc.subject Augmented-wave method en
dc.subject Doped hydroxyapatite en
dc.subject Basis-set en
dc.subject Phosphates en
dc.subject Substitution en
dc.subject Nanocrystals en
dc.subject Resorption en
dc.subject Metals en
dc.subject Hydroxyapatite en
dc.subject Strontium en
dc.subject Durapatite en
dc.subject Entropy en
dc.subject Quantum Theory en
dc.title Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-12-18T16:28:19Z
dc.description.version Accepted Version en
dc.internal.rssid 348788216
dc.internal.wokid WOS:000300314100020
dc.contributor.funder University of Limerick en
dc.contributor.funder Westfälische Wilhelms-Universität Münster en
dc.contributor.funder European Commission en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Higher Education Authority en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Chemistry Chemical Physics en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement