Non-stoichiometric oxide and metal interfaces and reactions

Loading...
Thumbnail Image
Files
4450.pdf(1.37 MB)
Accepted version
Date
2009-01-17
Authors
Bennett, R. A.
Mulley, J. S.
Basham, M.
Nolan, Michael
Elliott, Simon D.
Mulheran, Paul A.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Verlag
Research Projects
Organizational Units
Journal Issue
Abstract
We have employed a combination of experimental surface science techniques and density functional calculations to study the reduction of TiO(2)(110) surfaces through the doping with submonolayer transition metals. We concentrate on the role of Ti adatoms in self doping of rutile and contrast the behaviour to that of Cr. DFT+U calculations enable identification of probable adsorption structures and their spectroscopic characteristics. Adsorption of both metals leads to a broken symmetry and an asymmetric charge transfer localised around the defect site of a mixed localised/delocalised character. Charge transfer creates defect states with Ti 3d character in the band gap at similar to 1-eV binding energy. Cr adsorption, however, leads to a very large shift in the valence-band edge to higher binding energy and the creation of Cr 3d states at 2.8-eV binding energy. Low-temperature oxidation lifts the Ti-derived band-gap states and modifies the intensity of the Cr features, indicative of a change of oxidation state from Cr(3+) to Cr(4+). Higher temperature processing leads to a loss of Cr from the surface region, indicative of its substitution into the bulk.
Description
Keywords
Scanning tunneling microscopy , Augmented-wave method , Surface structure , Titanium dioxide , Thin films , STM , TiO2(110) , CrO2 , Chromium Dioxide , Transition , Growth , Adsorption , Density functional theory
Citation
Bennett, R. A., Mulley, J. S., Basham, M., Nolan, M., Elliott, S. D. and Mulheran, P. A. (2009) 'Non-stoichiometric oxide and metal interfaces and reactions', Applied Physics A, 96(3), pp. 543-548. doi:10.1007/s00339-008-5066-1
Link to publisher’s version
Copyright
© Springer-Verlag 2009. The final publication is available at Springer via http://dx.doi.org/10.1007/s00339-008-5066-1