Surface modification of TiO2 with copper clusters for band gap narrowing

Show simple item record

dc.contributor.author Sharma, Preetam K.
dc.contributor.author Cortes, Maria Ana L. R. M.
dc.contributor.author Hamilton, Jeremy W. J.
dc.contributor.author Han, Yisong
dc.contributor.author Byrne, J. Anthony
dc.contributor.author Nolan, Michael
dc.date.accessioned 2017-12-20T12:01:03Z
dc.date.available 2017-12-20T12:01:03Z
dc.date.issued 2017-12-15
dc.identifier.citation Sharma, P. K., Cortes, M. A. L. R. M., Hamilton, J. W. J., Han, Y., Byrne, J. A. and Nolan, M. (2017) 'Surface modification of TiO2 with copper clusters for band gap narrowing', Catalysis Today, 321-322, pp. 9-17. doi: 1016/j.cattod.2017.12.002 en
dc.identifier.volume 321-322
dc.identifier.startpage 9
dc.identifier.endpage 17
dc.identifier.issn 0920-5861
dc.identifier.uri http://hdl.handle.net/10468/5201
dc.identifier.doi 10.1016/j.cattod.2017.12.002
dc.description.abstract Surface modification of photocatalytic materials to give better activity, and potentially extending the response into the visible spectrum, is an area of active research. In this work, DFT modelling suggests that surface modification of rutile and anatase TiO2 with partially oxidised copper clusters can induce a red shift in the photo-action spectrum. Copper clusters were synthesised and characterised separately before TiO2 nanoparticle surface modification. Characterisation of copper clusters and photocatalysts modified with copper clusters showed that ex-situ synthesis can control the size of surface clusters. Sub-nanometre clusters of copper maintained their size and morphology upon attachment to the photocatalyst surface. The copper clusters we determined to be a mixture of Cu(0) and Cu(I), and no significant change in the oxidation state was observed following surface modification or following photoelectrochemical measurements. Experimental measurements including UV–vis spectroscopy and valence band XPS showed a small red shift the band gap correlating to the DFT predictions. Photoelectrochemical characterisation showed an enhancement in the UV photocurrent response and a small red shift in the effective band gap for the surface modified TiO2. en
dc.description.sponsorship National Science Foundation (US-Ireland R&D Partnership Program, NSF (CBET-1438721)); Department for Education (DfE (USI065)); Ulster University (PhD scholarship); Invest Northern Ireland (RD0713920); Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0920586117308210
dc.rights © 2017 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license. en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 en
dc.subject TiO2 en
dc.subject Copper clusters en
dc.subject Surface modification en
dc.subject Band gap engineering en
dc.subject DFT modelling en
dc.subject X-ray photoelectron spectroscopy en
dc.subject Photoelectrochemical water splitting en
dc.title Surface modification of TiO2 with copper clusters for band gap narrowing en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 24 months after publication by request of the publisher. en
dc.check.date 2019-12-15
dc.date.updated 2017-12-20T11:49:18Z
dc.description.version Accepted Version en
dc.internal.rssid 419970669
dc.contributor.funder National Science Foundation en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Department for Education en
dc.contributor.funder Ulster University en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Invest Northern Ireland, United States en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Catalysis Today en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

© 2017 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license. Except where otherwise noted, this item's license is described as © 2017 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement