Citation:Scheurer, S., Tedesco, S., Brown, K. N., O'Flynn, B. (2017) 'Human activity recognition for emergency first responders via body-worn inertial sensors', IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, Netherlands, 9-12 May. doi: 10.1109/BSN.2017.7935994
Every year over 75 000 firefighters are injured and 159 die in the line of duty. Some of these accidents could be averted if first response team leaders had better information about the situation on the ground. The SAFESENS project is developing a novel monitoring system for first responders designed to provide response team leaders with timely and reliable information about their firefighters' status during operations, based on data from wireless inertial measurement units. In this paper we investigate if Gradient Boosted Trees (GBT) could be used for recognising 17 activities, selected in consultation with first responders, from inertial data. By arranging these into more general groups we generate three additional classification problems which are used for comparing GBT with k-Nearest Neighbours (kNN) and Support Vector Machines (SVM). The results show that GBT outperforms both kNN and SVM for three of these four problems with a mean absolute error of less than 7%, which is distributed more evenly across the target activities than that from either kNN or SVM.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement