First principles modeling of defects in the Al2O3/In0.53Ga0.47As system

Show simple item record Greene-Diniz, Gabriel Kuhn, Kelin J. Hurley, Paul K. Greer, James C. 2018-04-04T09:54:01Z 2018-04-04T09:54:01Z 2017-02-15
dc.identifier.citation Greene-Diniz, G., Kuhn, K. J., Hurley, P. K. and Greer, J. C. (2017) 'First principles modeling of defects in the Al2O3/In0.53Ga0.47As system', Journal of Applied Physics, 121(7), 075703 (14pp). doi:10.1063/1.4975033 en
dc.identifier.volume 121 en
dc.identifier.issued 7 en
dc.identifier.startpage 1 en
dc.identifier.endpage 14 en
dc.identifier.issn 0021-8979
dc.identifier.doi 10.1063/1.4975033
dc.description.abstract Density functional theory paired with a first order many-body perturbation theory correction is applied to determine formation energies and charge transition energies for point defects in bulk In0.53Ga0.47As and for models of the In0.53Ga0.47As surface saturated with a monolayer of Al2O3. The results are consistent with previous computational studies that AsGa antisites are candidates for defects observed in capacitance voltage measurements on metal-oxide-semiconductor capacitors, as the AsGa antisite introduces energy states near the valence band maximum and near the middle of the energy bandgap. However, substantial broadening in the distribution of the GaAs charge transition levels due to the variation in the local chemical environment resulting from alloying on the cation (In/Ga) sublattice is found, whereas this effect is absent for AsGa antisites. Also, charge transition energy levels are found to vary based on proximity to the semiconductor/oxide interfacial layer. The combined effects of alloy- and proximity-shift on the GaAs antisite charge transition energies are consistent with the distribution of interface defect levels between the valence band edge and midgap as extracted from electrical characterization data. Hence, kinetic growth conditions leading to a high density of either GaAs or AsGa antisites near the In0.53Ga0.47As/Al2O3 interface are both consistent with defect energy levels at or below midgap. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.rights © 2017, the Authors. Published by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and AIP Publishing. The following article appeared in G. Greene-Diniz et al., Journal of Applied Physics, 121(7), 075703 (14pp), and may be found at en
dc.subject Defect en
dc.subject Midgap en
dc.subject Alumina en
dc.subject Antisite defects en
dc.subject Defect states en
dc.subject Density functional theory en
dc.subject Energy gap en
dc.subject Gallium arsenide en
dc.subject III-V semiconductors en
dc.subject Indium compounds en
dc.subject Many-body problems en
dc.subject Monolayers en
dc.subject Perturbation theory en
dc.subject Valence bands en
dc.title First principles modeling of defects in the Al2O3/In0.53Ga0.47As system en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Paul Hurley, Tyndall Micronano Electronics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2018-03-29T11:29:19Z
dc.description.version Published Version en
dc.internal.rssid 431799759
dc.internal.rssid 432558333
dc.contributor.funder Seventh Framework Programme en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.identifier.articleid 075703
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::NMP/604416/EU/From atom-to-Device Explicit simulation Environment for Photonics and Electronics Nanostructures/DEEPEN en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/13/IA/1956/IE/SMALL: Semi-Metal ALL-in-One Technologies/ en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement