Formation mechanism of metal–molecule–metal junctions: molecule-assisted migration on metal defects

Show simple item record Thompson, Damien Liao, Jianhui Nolan, Michael Quinn, Aidan J. Nijhuis, Christian A. O'Dwyer, Colm Nirmalraj, Peter N. Schönenberger, Christian Calame, Michel 2018-08-03T11:02:08Z 2018-08-03T11:02:08Z 2015-08-05
dc.identifier.citation Thompson, D., Liao, J., Nolan, M., Quinn, A. J., Nijhuis, C. A., O’Dwyer, C., Nirmalraj, P. N., Schönenberger, C. and Calame, M. (2015) 'Formation Mechanism of Metal–Molecule–Metal Junctions: Molecule-Assisted Migration on Metal Defects', The Journal of Physical Chemistry C, 119(33), pp. 19438-19451. doi: 10.1021/acs.jpcc.5b04383 en
dc.identifier.volume 119 en
dc.identifier.issued 33 en
dc.identifier.startpage 19438 en
dc.identifier.endpage 19451 en
dc.identifier.issn 1932-7447
dc.identifier.doi 10.1021/acs.jpcc.5b04383
dc.description.abstract Activation energies, Ea, measured from molecular exchange experiments are combined with atomic-scale calculations to describe the migration of bare Au atoms and Au–alkanethiolate species on gold nanoparticle surfaces during ligand exchange for the creation of metal–molecule–metal junctions. It is well-known that Au atoms and alkanethiol–Au species can diffuse on gold with sub-1 eV barriers, and surface restructuring is crucial for self-assembled monolayer (SAM) formation for interlinking nanoparticles and in contacting nanoparticles to electrodes. In the present work, computer simulations reveal that naturally occurring ridges and adlayers on Au(111) are etched and resculpted by migration of alkanethiolate–Au species toward high coordination kink sites at surface step edges. The calculated energy barrier, Eb, for diffusion via step edges is 0.4–0.7 eV, close to the experimentally measured Ea of 0.5–0.7 eV. By contrast, putative migration from isolated nine-coordinated terrace sites and complete Au unbinding from the surface incur significantly larger barriers of +1 and +3 eV, respectively. Molecular van der Waals packing energies are calculated to have negligible effect on migration barriers for typically used molecules (length < 2.5 nm), indicating that migration inside SAMs does not change the size of the migration barrier. We use the computational methodology to propose a means of creating Au nanoparticle arrays via selective replacement of citrate protector molecules by thiocyanate linker molecules on surface step sites. This work also outlines the possibility of using Au/Pt alloys as possible candidates for creation of contacts that are well-formed and long-lived because of the superior stability of Pt interfaces against atomic migration. en
dc.description.sponsorship Science Foundation Ireland (computing resources at the SFI/Higher Education Authority Irish Centre for High-End Computing (ICHEC)); National Research Foundation Singapore (Award NRF-CRP 8-2011-07) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Chemical Society (ACS) en
dc.rights © 2015 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see en
dc.subject Gold en
dc.subject Atomic-scale calculation en
dc.subject Computational methodology en
dc.subject Formation mechanism en
dc.subject Gold Nanoparticles en
dc.subject Metal-molecule-metal junctions en
dc.subject Molecular exchanges en
dc.subject Naturally occurring en
dc.subject Surface restructuring en
dc.subject Activation energy en
dc.subject Atoms en
dc.subject Contacts (fluid mechanics) en
dc.subject Metal nanoparticles en
dc.subject Metals en
dc.subject Molecules en
dc.subject Nanoparticles en
dc.subject Platinum alloys en
dc.subject Self assembled monolayers en
dc.subject Van der Waals forces en
dc.title Formation mechanism of metal–molecule–metal junctions: molecule-assisted migration on metal defects en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Colm O'Dwyer, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2018-08-02T18:39:53Z
dc.description.version Accepted Version en
dc.internal.rssid 314912824
dc.contributor.funder Seventh Framework Programme en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder National Research Foundation Singapore en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Physical Chemistry C en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::NMP/213382/EU/Multi-scale Formation of Functional Nanocrystal-Molecule Assemblies and Architectures/FUNMOL en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/11/SIRG/B2111/IE/Engineering Multivalent Proteins for Regenerative Medicine (EMPoRiuM)/ en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/318597/EU/SYnaptic MOlecular NEtworks for Bio-inspired Information Processing/SYMONE en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP3::PEOPLE/606728/EU/MOLECULAR-SCALE ELECTRONICS: Concepts, Contacts and Stability en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement