Full text restriction information:Access to this article is restricted until 12 months after publication by request of the publisher.
Restriction lift date:2019-08-07
Citation:Maguire, N. M., Ford, A., Balzarini, J. and Maguire, A. R. (2018) 'Synthesis of Guanine α-Carboxy Nucleoside Phosphonate (G-α-CNP), a direct inhibitor of multiple viral DNA polymerases', The Journal of Organic Chemistry, In Press, doi:10.1021/acs.joc.8b01124
The synthesis of guanine α-carboxy nucleoside phosphonate (G-α-CNP) is described. Two routes provide access to racemic G-α-CNP 9, one via base construction and the other utilizing Tsuji–Trost allylic substitution. The latter methodology was also applied to the enantiopure synthesis of both antipodes of G-α-CNP, each of which shows interesting antiviral DNA polymerase activity. Additionally, we report an improved multi-gram scale preparation of the cyclopentene building block 10, starting material for the preferred Tsuji–Trost route to 9.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement