JavaScript is disabled for your browser. Some features of this site may not work without it.
The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
Citation:Wang, K., Li, Z., Wang, Y., Liu, H., Chen, J., Holmes, J. and Zhou, H. (2010) 'Carbon nanocages with nanographene shell for high-rate lithium ion batteries', Journal of Materials Chemistry, 20(43), pp. 9748-9753. doi: 10.1039/C0JM01704C
Carbon nanocages with a nanographene shell have been prepared by catalytic decomposition of p-xylene on a MgO supported Co and Mo catalyst in supercritical CO2 at a pressure of 10.34 MPa and temperatures ranging from 650 to 750 °C. The electrochemical performance of these carbon nanocages as anodes for lithium ion batteries has been evaluated by galvanostatic cycling. The carbon nanocages prepared at a temperature of 750 °C exhibited relatively high reversible capacities, superior rate performance and excellent cycling life. The advanced performance of the carbon nanocages prepared at 750 °C is ascribed to their unique structural features: (1) nanographene shells and the good inter-cage contact ensuring fast electron transportation, (2) a porous network formed by fine pores in the carbon shell and the void space among the cages facilitating the penetration of the electrolyte and ions within the electrode, (3) thin carbon shells shortening the diffusion distance of Li ions, and (4) the high specific surface area providing a large number of active sites for charge-transfer reactions. These carbon nanocages are promising candidates for application in lithium ion batteries.
McNulty, David; Buckley, D. Noel; O'Dwyer, Colm(Electrochemical Society, 2015-05)
In this work we investigate two alternative methods to remove amine molecules from as-synthesized vanadium oxide nanotubes (VONTs). Thermal treatment results in the formation of polycrystalline nanorods (poly-NRs) and ion ...
McNulty, David; Geaney, Hugh; Armstrong, Eileen; O'Dwyer, Colm(Royal Society of Chemistry (RSC), 2016-02-12)
Structured porous materials have provided several breakthroughs that have facilitated high rate capability, better capacity retention and material stability in Li-ion batteries. However, most advances have been limited to ...
Osiak, Michal J.; Geany, Hugh; Armstrong, Eileen; O'Dwyer, Colm(Royal Society of Chemistry (RSC), 2014-03-04)
This review outlines the developments in the structure, composition, size, and shape control of many important and emerging Li-ion battery materials on many length scales, and details very recent investigations on how the ...
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement