A study on the spatial dependence of a MEMS electromagnetic transducer

Show simple item record

dc.contributor.author Houlihan, Ruth
dc.contributor.author Jackson, Nathan
dc.contributor.author Mathewson, Alan
dc.contributor.author Olszewski, Oskar Zbigniew
dc.date.accessioned 2019-04-15T08:57:05Z
dc.date.available 2019-04-15T08:57:05Z
dc.date.issued 2019-01-10
dc.identifier.citation Houlihan, R., Jackson, N., Mathewson, A. and Olszewski, O. Z. (2019) 'A Study on the Spatial Dependence of a MEMS Electromagnetic Transducer', Journal of Microelectromechanical Systems, 28(2), pp. 290-297. doi: 10.1109/JMEMS.2018.2887004 en
dc.identifier.volume 28 en
dc.identifier.issued 2 en
dc.identifier.startpage 290 en
dc.identifier.endpage 297 en
dc.identifier.issn 1057-7157
dc.identifier.uri http://hdl.handle.net/10468/7762
dc.identifier.doi 10.1109/JMEMS.2018.2887004 en
dc.description.abstract A MEMS, silicon-based device with a piezoelectric layer and an integrated magnet is presented for magnetic to electrical transduction. The cantilever structure can be configured either as an energy harvester to harvest power from an AC power line or as an AC current sensor. The positioning of the transducer with respect to the conductor is critical in both scenarios. For the energy scavenger, correct positioning is required to optimize the harvested power. For the current sensor, it is necessary to optimize the sensitivity of the sensor. This paper considers the effect of the relative position of the transducer with respect to the wire on the resulting electromagnetic forces and torques driving the device. It is shown in this paper that it is the net equivalent torque at the anchor that must be considered and not just the vertical component of the magnetic force as has been widely assumed heretofore. We show that for single wire conductors, the commonly made assumption that there exists two symmetrical power peaks at 45° either side of the wire is untrue, but rather that the net driving torque on one side of the wire can be more than an order of magnitude greater than the other. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en
dc.relation.uri https://ieeexplore.ieee.org/document/8607961
dc.rights © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. en
dc.subject Torque en
dc.subject Electromagnetics en
dc.subject Wires en
dc.subject Force en
dc.subject Transducers en
dc.subject Magnetic separation en
dc.subject Conductors en
dc.subject Energy harvesting en
dc.subject Piezoelectric transducers en
dc.subject Electromagnetic analysis en
dc.subject Electromagnetic forces en
dc.subject Mechanical vibrations en
dc.title A study on the spatial dependence of a MEMS electromagnetic transducer en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Ruth Houlihan, Tyndall Micronano Electronics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: ruth.houlihan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2019-04-15T08:47:02Z
dc.description.version Accepted Version en
dc.internal.rssid 481638212
dc.contributor.funder Enterprise Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal Of Microelectromechanical Systems en
dc.internal.copyrightchecked No
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress ruth.houlihan@tyndall.ie en
dc.identifier.eissn 1941-0158

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement