Low loss photonic nanocavity via dark magnetic dipole resonant mode near metal

Loading...
Thumbnail Image
Files
s41598-018-35291-w.pdf(2.27 MB)
Published version
41598_2018_35291_MOESM1_ESM.docx(340.25 KB)
Supplementary file
Date
2018-11-19
Authors
Liu, Ning
Silien, Christophe
Sun, Greg
Corbet, Brian M.
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
Research Projects
Organizational Units
Journal Issue
Abstract
The dielectric-semiconductor-dielectric-metal 4 layered structure is a well-established configuration to support TM hybrid plasmonic modes, which have demonstrated signifcant advantages over pure photonic modes in structures without metal to achieve low loss resonant cavities at sub-difraction limited volumes. The photonic modes with TE characteristics supported by the same 4 layered structure, on the other hand, are less studied. Here we show that a low loss photonic mode with TE01 characteristics exists in the dielectric-semiconductor-dielectric-metal 4 layered structure if a truncated cylindrical disk is chosen as the semiconductor core. This mode exhibits the lowest cavity loss among all resonant modes, including both pure photonic and hybrid plasmonic modes, at cavity radius <150nm and within the wavelength range 620nm to 685nm, with a footprint ~0.83 (λ/2nef) 2, physical size ~0.47 (λ/2nef) 3 and a mode volume down to 0.3 (λ/2nef) 3. The low cavity loss of this TE01 mode is attributed to its substantially reduced radiation loss to the far feld by the creation of image charges through the metal response. Because of the low mode penetration in the metal, this photonic mode show equally low cavity loss near industry relevant metals such as Cu. Our study demonstrates an alternative to hybrid plamonic modes and metallo-dielectric modes to achieve low loss cavities with extremely small footprints.
Description
Keywords
TM hybrid plasmonic modes , Photonic modes , TE characteristics
Citation
Liu, N., Silien, C., Sun, G. and Corbett, B., 2018. Low loss photonic nanocavity via dark magnetic dipole resonant mode near metal. Scientific reports, 8:17054, (12pp.). DOI: 10.1038/s41598-018-35291-w