Distorter characterisation using mutual inductance in electromagnetic tracking

Loading...
Thumbnail Image
Files
sensors-18-03059.pdf(9.06 MB)
Published version
Date
2018-09-12
Authors
Jaeger, Herman Alexander
Cantillon-Murphy, Pádraig
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
Electromagnetic tracking (EMT) is playing an increasingly important role in surgical navigation, medical robotics and virtual reality development as a positional and orientation reference. Though EMT is not restricted by line-of-sight requirements, measurement errors caused by magnetic distortions in the environment remain the technology’s principal shortcoming. The characterisation, reduction and compensation of these errors is a broadly researched topic, with many developed techniques relying on auxiliary tracking hardware including redundant sensor arrays, optical and inertial tracking systems. This paper describes a novel method of detecting static magnetic distortions using only the magnetic field transmitting array. An existing transmitter design is modified to enable simultaneous transmission and reception of the generated magnetic field. A mutual inductance model is developed for this transmitter design in which deviations from control measurements indicate the location, magnitude and material of the field distorter to an approximate degree. While not directly compensating for errors, this work enables users of EMT systems to optimise placement of the magnetic transmitter by characterising a distorter’s effect within the tracking volume without the use of additional hardware. The discrimination capabilities of this method may also allow researchers to apply material-specific compensation techniques to minimise position error in the clinical setting.
Description
Keywords
Electromagnetic tracking , Magnetics , Distortion , Robotics , Image-guided interventions
Citation
Jaeger, H. A. and Cantillon-Murphy, P., 2018. Distorter Characterisation Using Mutual Inductance in Electromagnetic Tracking. Sensors, 18(9), 3059, (25 pp.). DOI:10.3390/s18093059
Link to publisher’s version