Formation and characterization of Ni, Pt, and Ti stanogermanide contacts on Ge0.92Sn0.08

The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact Thank you for your understanding.

Show simple item record Galluccio, Emmanuele Petkov, Nikolay Mirabelli, Gioele Doherty, Jessica Lin, Shih-Ya Lu, Fang-Liang Liu, C. W. Holmes, Justin D. Duffy, Ray 2019-11-18T09:28:35Z 2019-11-18T09:28:35Z 2019-09-13
dc.identifier.citation Galluccio, E., Petkov, N., Mirabelli, G., Doherty, J., Lin, S.-Y., Lu, F.-L., Liu, C. W., Holmes, J. D. and Duffy, R. (2019) 'Formation and characterization of Ni, Pt, and Ti stanogermanide contacts on Ge0.92Sn0.08', Thin Solid Films, 690, 137568 (7pp). doi: 10.1016/j.tsf.2019.137568 en
dc.identifier.volume 690 en
dc.identifier.startpage 1 en
dc.identifier.endpage 7 en
dc.identifier.issn 0040-6090
dc.identifier.doi 10.1016/j.tsf.2019.137568 en
dc.description.abstract In this article we provide a comparative and systematic study on contact formation for germanium-tin (GeSn) thin films containing a high percentage of Sn (8 at.%). 20 nm of Nickel (Ni), Titanium (Ti), or Platinum (Pt) was deposited on Ge0.92Sn0.08 layers grown on Ge substrates, and subsequently annealed between 300 and 500 °C to form stanogermanide alloys. Several experimental techniques were employed to characterize the material and the electrical contact behaviour, with the purpose of identifying the most promising stanogermanide contact candidate, in terms of low sheet resistance, low surface roughness and low formation temperature. Among these three different metals we found that, for nanoelectronic applications, nickel-stanogermanide (NiGeSn) was the most promising candidate based on a low sheet resistance combined with a low formation temperature, below 400 °C. PtGeSn showed better behaviour in terms of thermal stability compared with the other two options, while Ti was found to be relatively unreactive under these annealing conditions, resulting in poor TiGeSn formation. For the lowest resistance stanogermanide contact generated, namely NiGeSn formed at 300 °C, detailed lattice resolution Transmission Electron Microscopy imaging, combined with fast Fourier transformation analysis, identified the formation of the Nix-1(GeSn)y-1 phase. en
dc.description.sponsorship Ministry of Science and Technology, Taiwan (MOST 107-2622-8-002-018; MOST 107-3017-F-009-002) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier B.V. en
dc.rights © 2019, the Authors. This document is the preprint version of a published work that appeared in final form in Thin Solid Films © Elsevier B.V. after peer review and technical editing by the publisher. To access the final edited and published work see en
dc.subject Germanium-tin en
dc.subject Stanogermanides en
dc.subject Sheet resistance en
dc.subject Lattice imaging en
dc.title Formation and characterization of Ni, Pt, and Ti stanogermanide contacts on Ge0.92Sn0.08 en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Emmanuele Galluccio, Tyndall National Institute, University College Cork, Cork, Ireland. T: +353-21-490-3000 E: en
dc.internal.availability Full text available en 2019-11-15T09:45:51Z
dc.description.version Submitted Version en
dc.internal.rssid 499913612
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Ministry of Science and Technology, Taiwan en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Thin Solid Films en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.identifier.articleid 137568 en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/ en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement