Integrated silicon photonic packaging

Loading...
Thumbnail Image
Files
Thesis_corrected_submission.pdf(7.97 MB)
Full Text E-thesis
Date
2019
Authors
Hwang, How Yuan
Journal Title
Journal ISSN
Volume Title
Publisher
University College Cork
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
Silicon photonics has garnered plenty of interests from both the academia and industry due to its high-speed transmission potential as well as sensing capability to complement silicon electronics. This has led to significant growth on the former, valuing at US$ 626.8M in 2017 and is expected to grow 3-fold to US$ 1,988.2M by 2023, based on data from MarketsandMarkets™. Silicon photonics’ huge potential has led to worldwide attention on fundamental research, photonic circuit designs and device fabrication technologies. However, as with silicon electronics in its early years, the silicon photonics industry today is extremely fragmented with various chip designs and layouts. Most silicon photonic devices fabricated are not able to reach the hand of consumers, due to a lack of information related to packaging design rules, components and processes. The importance of packaging technologies, which play a crucial role in turning photonic circuits and devices into the final product that end users can used in their daily lives, has been overlooked and understudied. This thesis aims to – 1. fill the missing gap by adapting existing electronics packaging techniques, 2. assess its scalability, 3. assess supply chain integration and finally 4. develop unique packaging approaches specifically for silicon photonics. The first section focused on high density packaging components and processes using University of California, Berkeley’s state-of-the-art silicon photonic MEMS optical switches as test devices. Three test vehicles were developed using (1) via-less ceramic and (2) spring-contacted electrical interposers for 2D integration and (3) through-glass-via electrical interposers for 2.5D heterogeneous integration. A high density (1) lidless fibre array and (2) a 2D optical interposer, which allows pitch-reduction of optical waveguides were also developed in this thesis. Together, these components demonstrated the world’s first silicon 2 photonic MEMS optical switch package and subsequently the highest density silicon photonic packaging components with 512 electrical I/Os and 272 optical I/Os. The second section then moved away from active optical coupling that was used in the former, investigating instead passive optical packaging concepts for the future. Two approaches were investigated - (1) grating-to-grating and (2) evanescent couplings. The former allows the development of pluggable packages, separating fibre coupling away from the device while the latter allows simultaneous optical and electrical packaging on a glass wafer in a single process. Lastly, the knowhow and concepts developed in this thesis were compiled into packaging design rules and subsequently introduced into H2020-MORPHIC, PIXAPP packaging training courses (as a trainer) and other packaging projects within the group.
Description
Keywords
MEMS optical switch , Pluggable , Silicon photonics , Packaging , Design rules , Evanescent , Through glass via
Citation
Hwang, H. Y. 2019. Integrated silicon photonic packaging. PhD Thesis, University College Cork.