Transferable force field for metal-organic frameworks from first-principles: BTW-FF

dc.contributor.authorBristow, Jessica K.
dc.contributor.authorTiana, Davide
dc.contributor.authorWalsh, Aron
dc.contributor.funderEngineering and Physical Sciences Research Councilen
dc.contributor.funderUniversity of Bathen
dc.contributor.funderEuropean Research Councilen
dc.contributor.funderSeventh Framework Programmeen
dc.contributor.funderRoyal Societyen
dc.contributor.funderResearch Councils UKen
dc.date.accessioned2018-07-05T14:56:11Z
dc.date.available2018-07-05T14:56:11Z
dc.date.issued2014-08-27
dc.date.updated2018-07-03T11:18:22Z
dc.description.abstractWe present an ab-initio derived force field to describe the structural and mechanical properties of metal-organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted.en
dc.description.sponsorshipRoyal Society (University Research Fellowship scheme)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBristow, J. K., Tiana, D. and Walsh, A. (2014) 'Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF', Journal of Chemical Theory and Computation, 10(10), pp. 4644-4652. doi: 10.1021/ct500515hen
dc.identifier.doi10.1021/ct500515h
dc.identifier.endpage4652en
dc.identifier.issn1549-9618
dc.identifier.journaltitleJournal of Chemical Theory and Computationen
dc.identifier.startpage4644en
dc.identifier.urihttps://hdl.handle.net/10468/6420
dc.identifier.volume10en
dc.language.isoenen
dc.publisherAmerican Chemical Society (ACS)en
dc.relation.projectinfo:eu-repo/grantAgreement/RCUK/EPSRC/EP/G03768X/1/GB/Doctoral Training Centre in Sustainable Chemical Technologies/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP2::ERC/277757/EU/Hybrid Semiconductors: Design Principles and Material Applications/HYBRIDSen
dc.relation.projectinfo:eu-repo/grantAgreement/RCUK/EPSRC/EP/F067496/1/GB/Modelling of Advanced Functional Materials using Terascale Computing/en
dc.relation.urihttps://pubs.acs.org/doi/10.1021/ct500515h
dc.rights© 2014 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.en
dc.rights.urihttps://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlen
dc.subjectMolecular-dynamics simulationsen
dc.subjectZeolitic imidazolate framework-8en
dc.subjectAb-initioen
dc.subjectCO2 adsorptionen
dc.subjectMechanicsen
dc.subjectStorageen
dc.subjectMOFSen
dc.subjectModelen
dc.subjectPerformanceen
dc.subjectStabilityen
dc.titleTransferable force field for metal-organic frameworks from first-principles: BTW-FFen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ct500515h.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
ct500515h_si_001.pdf
Size:
201.51 KB
Format:
Adobe Portable Document Format
Description:
Supporting Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: