Transferable force field for metal-organic frameworks from first-principles: BTW-FF
dc.contributor.author | Bristow, Jessica K. | |
dc.contributor.author | Tiana, Davide | |
dc.contributor.author | Walsh, Aron | |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en |
dc.contributor.funder | University of Bath | en |
dc.contributor.funder | European Research Council | en |
dc.contributor.funder | Seventh Framework Programme | en |
dc.contributor.funder | Royal Society | en |
dc.contributor.funder | Research Councils UK | en |
dc.date.accessioned | 2018-07-05T14:56:11Z | |
dc.date.available | 2018-07-05T14:56:11Z | |
dc.date.issued | 2014-08-27 | |
dc.date.updated | 2018-07-03T11:18:22Z | |
dc.description.abstract | We present an ab-initio derived force field to describe the structural and mechanical properties of metal-organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. | en |
dc.description.sponsorship | Royal Society (University Research Fellowship scheme) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Bristow, J. K., Tiana, D. and Walsh, A. (2014) 'Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF', Journal of Chemical Theory and Computation, 10(10), pp. 4644-4652. doi: 10.1021/ct500515h | en |
dc.identifier.doi | 10.1021/ct500515h | |
dc.identifier.endpage | 4652 | en |
dc.identifier.issn | 1549-9618 | |
dc.identifier.journaltitle | Journal of Chemical Theory and Computation | en |
dc.identifier.startpage | 4644 | en |
dc.identifier.uri | https://hdl.handle.net/10468/6420 | |
dc.identifier.volume | 10 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society (ACS) | en |
dc.relation.project | info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G03768X/1/GB/Doctoral Training Centre in Sustainable Chemical Technologies/ | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP2::ERC/277757/EU/Hybrid Semiconductors: Design Principles and Material Applications/HYBRIDS | en |
dc.relation.project | info:eu-repo/grantAgreement/RCUK/EPSRC/EP/F067496/1/GB/Modelling of Advanced Functional Materials using Terascale Computing/ | en |
dc.relation.uri | https://pubs.acs.org/doi/10.1021/ct500515h | |
dc.rights | © 2014 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. | en |
dc.rights.uri | https://pubs.acs.org/page/policy/authorchoice_termsofuse.html | en |
dc.subject | Molecular-dynamics simulations | en |
dc.subject | Zeolitic imidazolate framework-8 | en |
dc.subject | Ab-initio | en |
dc.subject | CO2 adsorption | en |
dc.subject | Mechanics | en |
dc.subject | Storage | en |
dc.subject | MOFS | en |
dc.subject | Model | en |
dc.subject | Performance | en |
dc.subject | Stability | en |
dc.title | Transferable force field for metal-organic frameworks from first-principles: BTW-FF | en |
dc.type | Article (peer-reviewed) | en |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: