Investigating subphotospheric dissipation in Gamma-Ray Bursts using joint Fermi-Swift observations

dc.contributor.authorAhlgren, Björn
dc.contributor.authorLarsson, Josefin
dc.contributor.authorValan, Vlasta
dc.contributor.authorMortlock, Daniel
dc.contributor.authorRyde, Felix
dc.contributor.authorPe’er, Asaf
dc.contributor.funderGöran Gustafssons Stiftelse för Naturvetenskaplig och Medicinsk Forskningen
dc.contributor.funderSwedish National Space Boarden
dc.contributor.funderKnut & Alice Wallenberg Foundationen
dc.contributor.funderSwedish National Infrastructure for Computingen
dc.date.accessioned2019-10-16T05:37:20Z
dc.date.available2019-10-16T05:37:20Z
dc.date.issued2019-07-26
dc.description.abstractThe jet photosphere has been proposed as the origin for the gamma-ray burst (GRB) prompt emission. In many such models, characteristic features in the spectra appear below the energy range of the Fermi Gamma-ray Burst Monitor (GBM) detectors, so joint fits with X-ray data are important in order to assess the photospheric scenario. Here we consider a particular photospheric model which assumes localized subphotospheric dissipation by internal shocks in a non-magnetized outflow. We investigate it using Bayesian inference and a sample of eight GRBs with known redshifts which are observed simultaneously with Fermi GBM and the Swift X-ray Telescope (XRT). This provides us with an energy range of 0.3 keV–40 MeV and much tighter parameter constraints. We analyze 32 spectra and find that 16 are well described by the model. We also find that the estimates of the bulk Lorentz factor, Γ, and the fireball luminosity, L 0,52, decrease while the fraction of dissipated energy, ε d, increases in the joint fits compared to GBM-only fits. These changes are caused by a small excess of counts in the XRT data, relative to the model predictions from fits to GBM-only data. The fact that our limited implementation of the physical scenario yields 50% accepted spectra is promising, and we discuss possible model revisions in the light of the new data. Specifically, we argue that the inclusion of significant magnetization, as well as removing the assumption of internal shocks, will provide better fits at low energies.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid76en
dc.identifier.citationAhlgren, B., Larsson, J., Valan, V., Mortlock, D., Ryde, F. and Pe’er, A. (2019) 'Investigating Subphotospheric Dissipation in Gamma-Ray Bursts Using Joint Fermi–Swift Observations', The Astrophysical Journal, 880(2), 76. (15pp.) DOI: 10.3847/1538-4357/ab271ben
dc.identifier.doi10.3847/1538-4357/ab271ben
dc.identifier.eissn1538-4357
dc.identifier.endpage15en
dc.identifier.issn0004-637X
dc.identifier.issued2en
dc.identifier.journaltitleAstrophysical Journalen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/8780
dc.identifier.volume880en
dc.language.isoenen
dc.publisherInstitute of Physics Publishingen
dc.relation.urihttps://iopscience.iop.org/article/10.3847/1538-4357/ab271b
dc.rights© 2019. The American Astronomical Society. All rights reserved.en
dc.rights.urihttps://creativecommons.org/licenses/en
dc.subjectGamma-ray bursten
dc.subjectGeneralen
dc.subjectMethodsen
dc.subjectData analysisen
dc.subjectRadiation mechanismsen
dc.subjectThermalen
dc.titleInvestigating subphotospheric dissipation in Gamma-Ray Bursts using joint Fermi-Swift observationsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ahlgren_2019_ApJ_880_76.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: