Temperature measurement of cold atoms using transient absorption of a resonant probe through an optical nanofibre
Loading...
Files
Published Version
Date
2016-09-29
Authors
Kumar, Ravi
Gokhroo, Vandna
Tiwari, Vibhuti Bhushan
Nic Chormaic, Síle
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Published Version
Abstract
Optical nanofibres are ultrathin optical fibres with a waist diameter typically less than the wavelength of light being guided through them. Cold atoms can couple to the evanescent field of the nanofibre-guided modes and such systems are emerging as promising technologies for the development of atom-photon hybrid quantum devices. Atoms within the evanescent field region of an optical nanofibre can be probed by sending near or on-resonant light through the fibre; however, the probe light can detrimentally affect the properties of the atoms. In this paper, we report on the modification of the local temperature of laser-cooled 87Rb atoms in a magneto-optical trap centred around an optical nanofibre when near-resonant probe light propagates through it. A transient absorption technique has been used to measure the temperature of the affected atoms and temperature variations from 160 μk to 850 μk, for a probe power ranging from 0 to 50 nW, have been observed. This effect could have implications in relation to using optical nanofibres for probing and manipulating cold or ultracold atoms.
Description
Keywords
Optical nanofibres , Hybrid quantum systems , Temperature , Laser-cooled rubidium
Citation
Kumar, R., Gokhroo, V., Tiwari, V.B. and Nic Chormaic, S. (2016) 'Temperature measurement of cold atoms using transient absorption of a resonant probe through an optical nanofibre', Journal of Optics, 18(11), 115401 (5 pp). doi:10.1088/2040-8978/18/11/115401