Multivalley electron conduction at the indirect-direct crossover point in highly tensile-strained germanium

dc.contributor.authorClavel, M. B.
dc.contributor.authorMurphy-Armando, Felipe
dc.contributor.authorXie, Y.
dc.contributor.authorHenry, K. T.
dc.contributor.authorKuhn, M.
dc.contributor.authorBodnar, R. J.
dc.contributor.authorKhodaparast, G. A.
dc.contributor.authorSmirnov, D.
dc.contributor.authorHeremans, J. J.
dc.contributor.authorHudait, M. K.
dc.date.accessioned2023-01-17T16:28:29Z
dc.date.available2023-01-17T16:28:29Z
dc.date.issued2022-12-27
dc.date.updated2023-01-10T09:21:51Z
dc.description.abstractAs forward-looking electron devices increasingly adopt high-mobility low-band-gap materials, such as germanium (Ge), questions remain regarding the feasibility of strain engineering in low-band-gap systems. Particularly, the Ge L-Γ valley separation (∼150 meV) can be overcome by introducing a high degree of tensile strain (ε ≥ 1.5%). It is therefore essential to understand the nature of highly strained Ge transport, wherein multivalley electron conduction becomes a possibility. Here, we report on the competitiveness between L- and Γ-valley transport in highly tensile-strained (ε ∼ 1.6%) Ge/In0.24Ga0.76 Asheterostructures. Temperature-dependent magnetotransport analysis reveals two contributing carrier populations, identified as lower- and higher-mobility L- and Γ-valley electrons (in Ge), using temperature-dependent Boltzmann transport modeling. Coupling this interpretation with electron-cyclotron-resonance studies, the effective mass (m*) of the higher-mobility Γ-valley electrons is probed, revealing m* = (0.049 ± 0.007)me. Moreover, a comparison of empirical and theoretical m* indicates that these electrons reside primarily in the first-two quantum sublevels of the Ge Γ valley. Consequently, our results provide an insight into the strain-dependent carrier dynamics of Ge, offering alternative pathways toward efficacious strain engineering.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid064083en
dc.identifier.citationClavel, M. B., Murphy-Armando, F., Xie, Y., Henry, K. T., Kuhn, M., Bodnar, R. J., Khodaparast, G. A., Smirnov, D., Heremans, J. J. and Hudait, M. K. (2022) 'Multivalley electron conduction at the indirect-direct crossover point in highly tensile-strained germanium', Physical Review Applied, 18(6), 064083 (13pp). doi: 10.1103/PhysRevApplied.18.064083en
dc.identifier.doi10.1103/PhysRevApplied.18.064083en
dc.identifier.eissn2331-7019
dc.identifier.endpage13en
dc.identifier.issued6en
dc.identifier.journaltitlePhysical Review Applieden
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/14085
dc.identifier.volume18en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rights© 2022, American Physical Society.en
dc.subjectStraintronicsen
dc.subjectTransport phenomenaen
dc.subjectElemental semiconductorsen
dc.subjectNarrow banden
dc.subjectGap systemsen
dc.subjectBoltzmann theoryen
dc.subjectCyclotron resonanceen
dc.subjectDensity functional theory developmenten
dc.titleMultivalley electron conduction at the indirect-direct crossover point in highly tensile-strained germaniumen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
NW10262_Accepted_version-11-21-2022.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
Supplementary_Information-nw10262-Accepted_Version_11-17-2022.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
Description:
Supplemental Material
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: