On the complexity of Robust Stable Marriage
dc.contributor.author | Genc, Begum | |
dc.contributor.author | Siala, Mohamed | |
dc.contributor.author | Simonin, Gilles | |
dc.contributor.author | O'Sullivan, Barry | |
dc.contributor.editor | Gao, Xiaofeng | |
dc.contributor.editor | Du, Hongwei | |
dc.contributor.editor | Han, Meng | |
dc.date.accessioned | 2018-01-15T12:37:58Z | |
dc.date.available | 2018-01-15T12:37:58Z | |
dc.date.issued | 2017-11-16 | |
dc.date.updated | 2018-01-12T12:34:00Z | |
dc.description.abstract | Robust Stable Marriage (RSM) is a variant of the classical Stable Marriage problem, where the robustness of a given stable matching is measured by the number of modifications required for repairing it in case an unforeseen event occurs. We focus on the complexity of finding an (a, b)-supermatch. An (a, b)-supermatch is defined as a stable matching in which if any a (non-fixed) men/women break up it is possible to find another stable matching by changing the partners of those a men/women and also the partners of at most b other couples. In order to show deciding if there exists an (a, b)-supermatch is NPNP -complete, we first introduce a SAT formulation that is NPNP -complete by using Schaefer’s Dichotomy Theorem. Then, we show the equivalence between the SAT formulation and finding a (1, 1)-supermatch on a specific family of instances. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Genc, B., Siala, M., Simonin, G. and O’Sullivan, B. (2017) 'On the Complexity of Robust Stable Marriage', in Gao, X., Du, H. & Han, M. (eds.) Combinatorial Optimization and Applications: 11th International Conference, COCOA 2017, Shanghai, China, December 16-18, 2017, Proceedings, Part II, Lecture Notes in Computer Science, LCNS vol. 10335, Cham: Springer International Publishing, pp. 441-448. doi: 10.1007/978-3-319-71147-8_30 | en |
dc.identifier.doi | 10.1007/978-3-319-71147-8_30 | |
dc.identifier.endpage | 448 | en |
dc.identifier.isbn | 978-3-319-71147-8 | |
dc.identifier.journaltitle | Lecture Notes in Computer Science | en |
dc.identifier.startpage | 441 | en |
dc.identifier.uri | https://hdl.handle.net/10468/5277 | |
dc.identifier.volume | 10335 | en |
dc.language.iso | en | en |
dc.publisher | Springer International Publishing | en |
dc.relation.ispartof | Combinatorial Optimization and Applications: 11th International Conference, COCOA 2017, Shanghai, China, December 16-18, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol 10628 | |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.rights | © Springer International Publishing AG 2017. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-71147-8_30 | en |
dc.subject | Robust Stable Marriage (RSM) | en |
dc.subject | Stable Marriage problem | en |
dc.subject | Combinatorial optimization | en |
dc.subject | A-stable | en |
dc.subject | Classical stable marriages | en |
dc.subject | Dichotomy theorem | en |
dc.subject | NP Complete | en |
dc.subject | Stable marriages | en |
dc.subject | Stable matching | en |
dc.title | On the complexity of Robust Stable Marriage | en |
dc.type | Book chapter | en |
dc.type | Conference item | en |