Stability of adsorbed water on TiO2-TiN interfaces. A first-principles and ab initio thermodynamics investigation

dc.contributor.authorGutiérrez Moreno, José Julio
dc.contributor.authorFronzi, Marco
dc.contributor.authorLovera, Pierre
dc.contributor.authorO'Riordan, Alan
dc.contributor.authorNolan, Michael
dc.contributor.funderEnvironmental Protection Agencyen
dc.date.accessioned2021-08-23T13:11:48Z
dc.date.available2021-08-23T13:11:48Z
dc.date.issued2018-06-11
dc.date.updated2021-08-23T12:58:40Z
dc.description.abstractTitanium nitride (TiN) surfaces can oxidize, and the growth of a TiOx layer on the surface along with the likely presence of water in the surrounding environment can modify the properties of this widely used coating material. The present density functional theory study, including Hubbard + U correction (DFT+U), investigates the stability of adsorbed water at TiO2-TiN interfaces with different defects that serve as a model for an oxide layer grown on a TiN surface. Surface free energy calculations show the stability of a perfect TiN-TiO2 interface at regular O pressures, while oxygen vacancy-rich TiO1.88-TiN is more favorable at reducing conditions. An isolated water is preferentially adsorbed dissociatively at perfect and oxygen -defective interfaces, while molecular adsorption is more stable at higher coverages. The adsorption energy is stronger at the oxygen-defective interfaces which arise from the high concentration of reduced Ti3+ and strong interfacial atomic relaxations. Ab initio atomistic thermodynamics show that water will be present at high coverage on TiO2-TiN interfaces at ambient conditions, and the pristine interface is only stable at very low pressure of O and H2O. The results of these DFT+U simulations are important for the fundamental understanding of wettability of interfacial systems involving metal oxides.en
dc.description.sponsorshipEnvironmental Protection Agency (UisceSense project W-2015-MS-21)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGutiérrez Moreno, J. J., Fronzi, M., Lovera, P., O'Riordan, A. and Nolan, M. (2018) 'Stability of adsorbed water on TiO2-TiN interfaces. A first-principles and ab initio thermodynamics investigation', Journal of Physical Chemistry C, 122(27), pp. 15395-15408. doi: 10.1021/acs.jpcc.8b03520en
dc.identifier.doi10.1021/acs.jpcc.8b03520en
dc.identifier.eissn1932-7455
dc.identifier.endpage15408en
dc.identifier.issn1932-7447
dc.identifier.issued27en
dc.identifier.journaltitleJournal of Physical Chemistry Cen
dc.identifier.startpage15395en
dc.identifier.urihttps://hdl.handle.net/10468/11770
dc.identifier.volume122en
dc.language.isoenen
dc.publisherACS Publicationsen
dc.rights© 2018, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, after technical editing by the publisher. To access the final edited and published work see: https://doi.org/10.1021/acs.jpcc.8b03520en
dc.subjectSputtered titanium nitrideen
dc.subjectAugmented-wave methoden
dc.subjectClay brick facadeen
dc.subjectOxygen vacanciesen
dc.subjectBiomedical applicationsen
dc.subjectOxidation mechanismen
dc.subjectTiN thin filmsen
dc.subjectDensity functional theoryen
dc.subjectVan der Waalsen
dc.subjectCeO2en
dc.titleStability of adsorbed water on TiO2-TiN interfaces. A first-principles and ab initio thermodynamics investigationen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
5923.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
jp8b03520_si_001.pdf
Size:
7.02 MB
Format:
Adobe Portable Document Format
Description:
Supporting Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: