Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability and high structural stability

dc.contributor.authorMcNulty, David
dc.contributor.authorCarroll, Elaine
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2018-02-19T15:21:33Z
dc.date.available2018-02-19T15:21:33Z
dc.date.issued2017-02-14
dc.date.updated2018-02-19T08:51:37Z
dc.description.abstractRutile TiO2 inverse opals provide long cycle life and impressive structural stability when tested as anode materials for Li-ion batteries. The capacity retention of TiO2 inverse opals (IOs) is greater than previously reported values for other rutile TiO2 nanomaterials, and the cycled crystalline phase and material interconnectivity is maintained over thousands of cycles. Consequently, this paper offers insight into the importance of optimizing the relationship between the structure and morphology on improving electrochemical performance of this abundant and low environmental impact material. TiO2 IOs show gradual capacity fading over 1000 and 5000 cycles, when cycled at specific currents of 75 and 450 mA g−1, respectively, while maintaining a high capacity and a stable overall cell voltage. TiO2 IOs achieve a reversible capacity of ≈170 and 140 mA h g−1 after the 100th and 1000th cycles, respectively, at a specific current of 75 mA g−1, corresponding to a capacity retention of ≈82.4%. The structural stability of the 3D IO phase from pristine rutile TiO2 to the conductive orthorhombic Li0.5TiO2 is remarkable and maintains its structural integrity. Image analysis conclusively shows that volumetric swelling is accommodated into the predefined pore space, and the IO periodicity remains constant and does not degrade over 5000 cycles.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMcNulty, D., Carroll, E. and O'Dwyer, C. (2017) 'Rutile TiO2 Inverse Opal Anodes for Li-Ion Batteries with Long Cycle Life, High-Rate Capability, and High Structural Stability', Advanced Energy Materials, 7(12), 1602291 (8pp). doi: 10.1002/aenm.201602291en
dc.identifier.doi10.1002/aenm.201602291
dc.identifier.endpage1602291-8en
dc.identifier.issn1614-6840
dc.identifier.journaltitleAdvanced Energy Materialsen
dc.identifier.startpage1602291-1en
dc.identifier.urihttps://hdl.handle.net/10468/5481
dc.identifier.volume7en
dc.language.isoenen
dc.publisherWileyen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/13/TIDA/E2761/IE/LiONSKIN - Moldable Li-ion battery outer skin for electronic devices/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/en
dc.relation.urihttp://onlinelibrary.wiley.com/doi/10.1002/aenm.201602291/full
dc.rights© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: D. McNulty, E. Carroll, C. O'Dwyer, ‘Rutile TiO2 Inverse Opal Anodes for Li-Ion Batteries with Long Cycle Life, High-Rate Capability, and High Structural Stability’, Adv. Energy Mater. 2017, 7, 1602291, which has been published in final form at http://dx.doi.org/10.1002/aenm.201602291. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.en
dc.subjectLi-ion batteriesen
dc.subjectLithium ion batteriesen
dc.subjectNanomaterialsen
dc.subjectTiO2 nanomaterialsen
dc.subjectTiO2 inverse opalsen
dc.subjectEnergy storageen
dc.titleRutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability and high structural stabilityen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TiO2_IO_Paper_Adv_Enrg_Mat_accepted.pdf
Size:
852.33 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: