Error tracing in programming: a path to personalised feedback
dc.contributor.author | Shaka, Martha | en |
dc.contributor.author | Carraro, Diego | en |
dc.contributor.author | Brown, Kenneth N. | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2025-04-25T13:22:13Z | |
dc.date.available | 2025-04-25T13:22:13Z | |
dc.date.issued | 2024 | en |
dc.description.abstract | Knowledge tracing, the process of estimating students’ mastery over concepts from their past performance and predicting future outcomes, often relies on binary pass/fail predictions. This hinders the provision of specific feedback by failing to diagnose precise errors. We present an error-tracing model for learning programming that advances traditional knowledge tracing by employing multi-label classification to forecast exact errors students may generate. Through experiments on a real student dataset, we validate our approach and compare it to two baseline knowledge-tracing methods. We demonstrate an improved ability to predict specific errors, for first attempts and for subsequent attempts at individual problems. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Shaka, M., Carraro, D. and Brown, K. N. (2024) 'Error tracing in programming: a path to personalised feedback', Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA). pp. 330–342. Available at: https://aclanthology.org/2024.bea-1.27/ | en |
dc.identifier.endpage | 342 | en |
dc.identifier.startpage | 330 | en |
dc.identifier.uri | https://hdl.handle.net/10468/17346 | |
dc.language.iso | en | en |
dc.publisher | Association for Computational Linguistics | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/Centres for Research Training (CRT) Programme/18/CRT/6223/IE/SFI Centre for Research Training in Artificial Intelligence/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/Research Centres Programme::Phase 2/12/RC/2289_P2/IE/INSIGHT_Phase 2 / | en |
dc.relation.uri | https://aclanthology.org/2024.bea-1.27/ | en |
dc.rights | © 2024, Association for Computational Linguistics. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Knowledge tracing | en |
dc.subject | Binary pass/fail predictions | en |
dc.subject | Real student dataset | en |
dc.title | Error tracing in programming: a path to personalised feedback | en |
dc.type | Conference item | en |