Surface orientation effects in crystalline-amorphous silicon interfaces

dc.contributor.authorNolan, Michael
dc.contributor.authorLegesse, Merid
dc.contributor.authorFagas, Gíorgos
dc.contributor.funderHigher Education Authorityen
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderSeventh Framework Programme
dc.date.accessioned2014-07-28T15:04:03Z
dc.date.available2014-07-28T15:04:03Z
dc.date.issued2012-09-25
dc.date.updated2013-10-29T21:39:34Z
dc.description.abstractIn this paper we present the results of empirical potential and density functional theory (DFT) studies of models of interfaces between amorphous silicon (a-Si) or hydrogenated amorphous Si (a-Si:H) and crystalline Si (c-Si) on three unreconstructed silicon surfaces, namely (100), (110) and (111). In preparing models of a-Si on c-Si, melting simulations are run with classical molecular dynamics (MD) at 3000 K for 10 ps to melt part of the crystalline surface and the structure is quenched to 300 K using a quench rate of 6 x 10(12) K s(-1) and finally relaxed with DFT. Incorporating the optimum hydrogen content in a-Si to passivate undercoordinated Si, followed by DFT relaxation, produces hydrogenated amorphous silicon on crystalline surfaces, a-Si:H/c-Si. The (100) surface is the least stable crystalline surface and forms the thickest amorphous Si region, while the most stable (110) surface forms the smallest amorphous region. Calculated radial distribution functions (RDF) in the amorphous and crystalline layers are consistent with a-Si and c-Si and indicate a structural interface region one layer thick. The electronic density of states shows an evolution from c-Si to a-Si (or a-Si:H), with a larger electronic interface layer, suggesting that the electronic properties are more strongly perturbed by interface formation compared to the atomic structure. The computed optical absorption spectra show strong effects arising from the formation of different a-Si and a-Si:H regions in different Si surfaces.en
dc.description.sponsorshipScience Foundation Ireland (Irish Centre for High End Computing); Higher Education Authority (Irish Centre for High End Computing);en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationNolan, M., Legesse, M. and Fagas, G. (2012) 'Surface orientation effects in crystalline-amorphous silicon interfaces', Physical Chemistry Chemical Physics, 14(43), pp. 15173-15179. doi: 10.1039/C2CP42679Jen
dc.identifier.doi10.1039/C2CP42679J
dc.identifier.endpage15179en
dc.identifier.issn1463-9076
dc.identifier.issued43en
dc.identifier.journaltitlePhysical Chemistry Chemical Physicsen
dc.identifier.startpage15173en
dc.identifier.urihttps://hdl.handle.net/10468/1604
dc.identifier.volume14en
dc.language.isoenen
dc.publisherThe Royal Society of Chemistryen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP1::ICT/257856/EU/Semiconducting Nanowire Platform for Autonomous Sensors/SINAPS
dc.rights© the Owner Societies 2012; Published by Royal Society of Chemistry. This is the Accepted Manuscript version of a published work that appeared in final form in Physical Chemistry Chemical Physics. To access the final published version of record, see http://pubs.rsc.org/en/content/articlepdf/2012/cp/c2cp42679jen
dc.subjectJunction solar-cellsen
dc.subjectMolecular-dynamicsen
dc.subjectEnergyen
dc.titleSurface orientation effects in crystalline-amorphous silicon interfacesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
aSi-cSi_Interfaces_PCCP_R1_Clean.pdf
Size:
12.14 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: