Influence of channel material properties on performance of nanowire transistors
dc.contributor.author | Razavi, Pedram | |
dc.contributor.author | Fagas, GĂorgos | |
dc.contributor.author | Ferain, Isabelle | |
dc.contributor.author | Yu, Ran | |
dc.contributor.author | Das, Samaresh | |
dc.contributor.author | Colinge, Jean-Pierre | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Science Foundation Ireland | |
dc.date.accessioned | 2017-09-20T10:06:33Z | |
dc.date.available | 2017-09-20T10:06:33Z | |
dc.date.issued | 2012 | |
dc.description.abstract | The performance of germanium and silicon inversion-mode and junctionless nanowire field-effect transistors are investigated using three-dimensional quantum mechanical simulations in the ballistic transport regime and within the framework of effective-mass theory for different channel materials and orientations. Our study shows that junctionless nanowire transistors made using n-type Ge or Si nanowires as a channel material are more immune to short-channel effects than conventional inversion-mode nanowire field-effect transistors. As a result, these transistors present smaller subthreshold swing, less drain-induced barrier-lowering, lower source-to-drain tunneling, and higher I-on/I-off ratio for the same technology node and low standby power technologies. We also show that the short-channel characteristics of Ge and Si junctionless nanowire transistors, unlike the inversion-mode nanowire transistors, are very similar. The results are explained through a detailed analysis on the effect of the channel crystallographic orientation, effective masses, and dielectric constant on electrical characteristics. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729777] | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 124509 | |
dc.identifier.citation | Razavi, P., Fagas, G., Ferain, I., Yu, R., Das, S. and Colinge, J.-P. (2012) 'Influence of channel material properties on performance of nanowire transistors', Journal of Applied Physics, 111(12), 124509 (8pp). doi: 10.1063/1.4729777 | en |
dc.identifier.doi | 10.1063/1.4729777 | |
dc.identifier.endpage | 8 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.issn | 1089-7550 | |
dc.identifier.issued | 12 | |
dc.identifier.journaltitle | Journal of Applied Physics | en |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/10468/4731 | |
dc.identifier.volume | 111 | |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/05/IN/I888/IE/Advanced Scalable Silicon-on-Insulator Devices for Beyond-End-of-Roadmap Semiconductor Technology/ | |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/10/IN.1/I2992/IE/Semiconductor Nanowire Transistors (SENATOR)/ | |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/257111/EU/Silicon Quantum Wire Transistors/SQWIRE | |
dc.relation.uri | http://aip.scitation.org/doi/10.1063/1.4729777 | |
dc.rights | © 2012, American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Razavi, P., Fagas, G., Ferain, I., Yu, R., Das, S. and Colinge, J.-P. (2012) 'Influence of channel material properties on performance of nanowire transistors', Journal of Applied Physics, 111(12), 124509 (8pp). doi: 10.1063/1.4729777 and may be found at http://aip.scitation.org/doi/10.1063/1.4729777 | en |
dc.subject | Elemental semiconductors | en |
dc.subject | Nanowires | en |
dc.subject | Germanium | en |
dc.subject | Tunneling | en |
dc.subject | Effective mass | en |
dc.title | Influence of channel material properties on performance of nanowire transistors | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 3080.pdf
- Size:
- 2.46 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version