A cardiovascular occlusion method based on the use of a smart hydrogel
dc.contributor.author | Jackson, Nathan | |
dc.contributor.author | Verbrugghe, Peter | |
dc.contributor.author | Cuypers, D. | |
dc.contributor.author | Adesanya, K. | |
dc.contributor.author | Engel, L. | |
dc.contributor.author | Glazer, P. | |
dc.contributor.author | Dubruel, Peter | |
dc.contributor.author | Mendes, Eduardo | |
dc.contributor.author | Herijigers, P. | |
dc.contributor.author | Stam, Frank | |
dc.date.accessioned | 2016-06-10T08:51:09Z | |
dc.date.available | 2016-06-10T08:51:09Z | |
dc.date.issued | 2014-09-04 | |
dc.date.updated | 2015-01-20T12:14:30Z | |
dc.description.abstract | Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Jackson, N., Verbrugghe, P., Cuypers, D., Adesanya, K., Engel, L., Glazer, P., Dubruel, P., Mendes, E., Herijigers, P. and Stam, F. (2014) 'A cardiovascular occlusion method based on the use of smart hydrogels', IEEE Transactions On Biomedical Engineering, 62(2), pp. 399-406. doi: 10.1109/TBME.2014.2353933 | en |
dc.identifier.doi | 10.1109/TBME.2014.2353933 | |
dc.identifier.endpage | 406 | en |
dc.identifier.issn | 0018-9294 | |
dc.identifier.issued | 2 | en |
dc.identifier.journaltitle | IEEE Transactions on Biomedical Engineering | en |
dc.identifier.startpage | 399 | en |
dc.identifier.uri | https://hdl.handle.net/10468/2715 | |
dc.identifier.volume | 62 | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en |
dc.subject | Blood vessel | en |
dc.subject | Cardiovascular | en |
dc.subject | Delivery device | en |
dc.subject | Electroactivation | en |
dc.subject | Hydrogel | en |
dc.subject | Occlusion | en |
dc.title | A cardiovascular occlusion method based on the use of a smart hydrogel | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- HEG-IEEE-TBME_2014.pdf
- Size:
- 417.5 KB
- Format:
- Adobe Portable Document Format
- Description:
- Author's Original
Loading...
- Name:
- FS_CardiovascularAV2014.pdf
- Size:
- 439.23 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: