Functionalization of SiO2 surfaces for Si monolayer doping with minimal carbon contamination

dc.contributor.authorvan Druenen, Maart
dc.contributor.authorCollins, Gillian
dc.contributor.authorGlynn, Colm
dc.contributor.authorO'Dwyer, Colm
dc.contributor.authorHolmes, Justin D.
dc.contributor.funderIrish Research Councilen
dc.contributor.funderHorizon 2020en
dc.date.accessioned2018-01-09T14:31:15Z
dc.date.available2018-01-09T14:31:15Z
dc.date.issued2017-12-14
dc.date.updated2018-01-09T14:21:41Z
dc.description.abstractMonolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (∼2 × 1020 atoms/cm3). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.en
dc.description.sponsorshipIrish Research Council (GOIPG/2015/2933)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationvan Druenen, M., Collins, G., Glynn, C., O’Dwyer, C. and Holmes, J. D. (2018) 'Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination', ACS Applied Materials & Interfaces, 10(2), pp. 2191-2201. doi:10.1021/acsami.7b16950en
dc.identifier.doi10.1021/acsami.7b16950
dc.identifier.endpage2201en
dc.identifier.issn1944-8244
dc.identifier.journaltitleACS Applied Materials & Interfacesen
dc.identifier.startpage2191en
dc.identifier.urihttps://hdl.handle.net/10468/5251
dc.identifier.volume10
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/654384/EU/Access to European Nanoelectronics Network/ASCENTen
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsami.7b16950
dc.rights© 2017 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/pdf/10.1021/acsami.7b16950en
dc.subjectCarbon contaminationen
dc.subjectCovalent functionalizationen
dc.subjectDopingen
dc.subjectMonolayeren
dc.subjectPhosphonic acidsen
dc.subjectSiliconen
dc.subjectStabilityen
dc.subjectX-ray photoelectron spectroscopyen
dc.titleFunctionalization of SiO2 surfaces for Si monolayer doping with minimal carbon contaminationen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4463.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: