Development of a personalized multiclass classification model to detect blood pressure variations associated with physical or cognitive workload
dc.contributor.author | Valerio, Andrea | en |
dc.contributor.author | Demarchi, Danilo | en |
dc.contributor.author | O'Flynn, Brendan | en |
dc.contributor.author | Motto Ros, Paolo | en |
dc.contributor.author | Tedesco, Salvatore | en |
dc.contributor.funder | Enterprise Ireland | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2024-06-12T11:31:33Z | |
dc.date.available | 2024-06-12T11:31:33Z | |
dc.date.issued | 2024-06-06 | en |
dc.description.abstract | Comprehending the regulatory mechanisms influencing blood pressure control is pivotal for continuous monitoring of this parameter. Implementing a personalized machine learning model, utilizing data-driven features, presents an opportunity to facilitate tracking blood pressure fluctuations in various conditions. In this work, data-driven photoplethysmograph features extracted from the brachial and digital arteries of 28 healthy subjects were used to feed a random forest classifier in an attempt to develop a system capable of tracking blood pressure. We evaluated the behavior of this latter classifier according to the different sizes of the training set and degrees of personalization used. Aggregated accuracy, precision, recall, and F1-score were equal to 95.1%, 95.2%, 95%, and 95.4% when 30% of a target subject’s pulse waveforms were combined with five randomly selected source subjects available in the dataset. Experimental findings illustrated that incorporating a pre-training stage with data from different subjects made it viable to discern morphological distinctions in beat-to-beat pulse waveforms under conditions of cognitive or physical workload. | en |
dc.description.sponsorship | Enterprise Ireland (Disruptive Technologies Innovation Fund (DTIF) project HOLISTICS) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 3697 | en |
dc.identifier.citation | Valerio, A., Demarchi, D., O’Flynn, B., Motto Ros, P. and Tedesco, S. (2024) ‘Development of a personalized multiclass classification model to detect blood pressure variations associated with physical or cognitive workload’, Sensors, 24(11), p. 3697. Available at: https://doi.org/10.3390/s24113697 | en |
dc.identifier.doi | https://doi.org/10.3390/s24113697 | en |
dc.identifier.endpage | 22 | en |
dc.identifier.issn | 1424-8220 | en |
dc.identifier.issued | 11 | en |
dc.identifier.journaltitle | Sensors | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/16002 | |
dc.identifier.volume | 24 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.relation.ispartof | Sensors | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 2/12/RC/2289-P2s/IE/INSIGHT Phase 2/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3918/IE/Confirm Centre for Smart Manufacturing/ | en |
dc.rights | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Cuffless blood pressure | en |
dc.subject | Personalized health | en |
dc.subject | Photoplethysmogram | en |
dc.subject | Pulse transit time | en |
dc.subject | Pulse wave analysis | en |
dc.title | Development of a personalized multiclass classification model to detect blood pressure variations associated with physical or cognitive workload | en |
dc.type | Article (peer-reviewed) | en |
oaire.citation.issue | 11 | en |
oaire.citation.volume | 24 | en |