Design of novel visible light active photocatalyst materials: Surface modified TiO2
dc.contributor.author | Nolan, Michael | |
dc.contributor.author | Iwaszuk, Anna | |
dc.contributor.author | Lucid, Aoife K. | |
dc.contributor.author | Carey, John J. | |
dc.contributor.author | Fronzi, Marco | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Higher Education Authority | en |
dc.contributor.funder | European Commission | en |
dc.contributor.funder | Partnership for Advanced Computing in Europe AISBL | en |
dc.contributor.funder | European Cooperation in Science and Technology | |
dc.date.accessioned | 2017-11-01T13:05:42Z | |
dc.date.available | 2017-11-01T13:05:42Z | |
dc.date.issued | 2016-02-02 | |
dc.date.updated | 2017-11-01T12:45:02Z | |
dc.description.abstract | Work on the design of new TiO2 based photocatalysts is described. The key concept is the formation of composite structures through the modification of anatase and rutile TiO2 with molecular-sized nanoclusters of metal oxides. Density functional theory (DFT) level simulations are compared with experimental work synthesizing and characterizing surface modified TiO2. DFT calculations are used to show that nanoclusters of metal oxides such as TiO2, SnO/SnO2, PbO/PbO2, ZnO and CuO are stable when adsorbed at rutile and anatase surfaces, and can lead to a significant red shift in the absorption edge which will induce visible light absorption; this is the first requirement for a useful photocatalyst. The origin of the red shift and the fate of excited electrons and holes are determined. For p-block metal oxides the oxidation state of Sn and Pb can be used to modify the magnitude of the red shift and its mechanism. Comparisons of recent experimental studies of surface modified TiO2 that validate our DFT simulations are described. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with a correct choice of nanocluster modified can be applied to other reactions. | en |
dc.description.sponsorship | European Commission (European Commission through the COST Action CM1104 “Reducible Metal Oxides, Structure and Function”); Partnership for Advanced Computing in Europe AISBL, (PRACE (RI-261557, RI-283493 and RI-312763) (Distributed European Computing Initiative (DECI)); Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Nolan, M., Iwaszuk, A., Lucid, A. K., Carey, J. J. and Fronzi, M. (2016) 'Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO2', Advanced Materials, 28(27), pp. 5425-5446. doi: 10.1002/adma.201504894 | en |
dc.identifier.doi | 10.1002/adma.201504894 | |
dc.identifier.endpage | 5446 | en |
dc.identifier.issn | 0935-9648 | |
dc.identifier.journaltitle | Advanced Materials, Chemical Vapor Deposition | en |
dc.identifier.startpage | 5425 | en |
dc.identifier.uri | https://hdl.handle.net/10468/4939 | |
dc.identifier.volume | 28 | en |
dc.language.iso | en | en |
dc.publisher | Wiley | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ | en |
dc.rights | © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: Nolan, M. et al. (2016) 'Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO2', Advanced Materials, 28(27), which has been published in final form at http://dx.doi.org/10.1002/adma.201504894. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | en |
dc.subject | Photocatalysis | en |
dc.subject | TiO2 | en |
dc.subject | Density functional theory | en |
dc.subject | Surface modification | en |
dc.subject | Nanoclusters | en |
dc.subject | Red shift | en |
dc.subject | Photoexcitation | en |
dc.subject | Adsorption | en |
dc.subject | Oxidation | en |
dc.subject | Holes | en |
dc.subject | Electrons | en |
dc.subject | SnO | en |
dc.subject | PbO; | en |
dc.subject | NiO | en |
dc.subject | CuO | en |
dc.subject | Fe2O3 | en |
dc.subject | UV-vis | en |
dc.subject | XPS | en |
dc.subject | Valence band | en |
dc.subject | Photocatalyst materials | en |
dc.subject | Photoexcitation | en |
dc.subject | Surface modification | en |
dc.subject | Valence bands | en |
dc.title | Design of novel visible light active photocatalyst materials: Surface modified TiO2 | en |
dc.type | Article (peer-reviewed) | en |