Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interaction

dc.check.date2017-12-02
dc.check.infoAccess to this article is restricted for 24 months after publication by request of the publisher.en
dc.contributor.authorFronzi, Marco
dc.contributor.authorDaly, William
dc.contributor.authorNolan, Michael
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Commissionen
dc.contributor.funderHigher Education Authorityen
dc.contributor.funderEuropean Cooperation in Science and Technologyen
dc.date.accessioned2017-11-01T14:34:13Z
dc.date.available2017-11-01T14:34:13Z
dc.date.issued2015-12-02
dc.date.updated2017-11-01T14:25:13Z
dc.description.abstractThe reduction of CO2 to fuels is an active research topic with much interest in using solar radiation and photocatalysts to transform CO2 into higher value chemicals. However, to date there are no photocatalysts known that can use solar radiation to efficiently reduce CO2. One particularly difficult problem is activating CO2 due to its high stability. In this paper we use density functional theory simulations to study novel surface modified TiO2 composites, based on modifying rutile and anatase TiO2 with molecular-sized metal oxide nanoclusters of SnO, ZrO2 and CeO2 and the interaction between CO2 and nanocluster-modified TiO2. We show that reduction of the supported nanocluster is favourable which then provides reduced cations and sites for CO2 adsorption. The atomic structures and energies of different adsorption configurations of CO2 on the reduced modified TiO2 composites are studied. Generally on reduced SnO and CeO2 nanoclusters, the interaction of CO2 is weak producing adsorbed carbonates. On reduced ZrO2, we find a stronger interaction with CO2 and carbonate formation. The role of the energies of oxygen vacancy formation in CO2 adsorption is important because if reduction is too favourable, the interaction with CO2 is not so favourable. We do find an adsorption configuration of CO2 at reduced CeO2 where a CO bond breaks, releasing CO and filling the oxygen vacancy site in the supported ceria nanocluster. These initial results for the interaction of CO2 at surface modified TiO2 provide important insights for future work on CO2 reduction using novel materials.en
dc.description.sponsorshipEuropean Commission (COST Action CM1104 “Reducible Metal Oxides, Structure and Function); Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFronzi, M., Daly, W. and Nolan, M. (2016) 'Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interaction', Applied Catalysis A: General, 521(Supplement C), pp. 240-249. doi: 10.1016/j.apcata.2015.11.038en
dc.identifier.doi10.1016/j.apcata.2015.11.038
dc.identifier.endpage249en
dc.identifier.issn0926-860X
dc.identifier.journaltitleApplied Catalysis A-Generalen
dc.identifier.startpage240en
dc.identifier.urihttps://hdl.handle.net/10468/4940
dc.identifier.volume521en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/en
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0926860X15302659
dc.rights© 2015 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license.5en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectPhotocatalysisen
dc.subjectTiOen
dc.subjectSurface modificationen
dc.subjectDensity functional theoryen
dc.subjectOxygen vacancyen
dc.subjectCOen
dc.subjectAdsorptionen
dc.titleReactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interactionen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
App_Cat_A_j.apcata.2015.11.038.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: