Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures

dc.contributor.authorWang, Tong
dc.contributor.authorPuchtler, Tim J.
dc.contributor.authorPatra, Saroj K.
dc.contributor.authorZhu, Tongtong
dc.contributor.authorJarman, John C.
dc.contributor.authorOliver, Rachel A.
dc.contributor.authorSchulz, Stefan
dc.contributor.authorTaylor, Robert A.
dc.contributor.funderLeverhulme Trust
dc.contributor.funderRoyal Academy of Engineering
dc.contributor.funderAgency for Science, Technology and Research
dc.contributor.funderScience Foundation Ireland
dc.contributor.funderEngineering and Physical Sciences Research Council
dc.date.accessioned2017-12-08T13:33:42Z
dc.date.available2017-12-08T13:33:42Z
dc.date.issued2017-09-21
dc.description.abstractWe report the successful realisation of intrinsic optical polarisation control by growth, in solid-state quantum dots in the thermoelectrically cooled temperature regime (≥200 K), using a non-polar InGaN system. With statistically significant experimental data from cryogenic to high temperatures, we show that the average polarisation degree of such a system remains constant at around 0.90, below 100 K, and decreases very slowly at higher temperatures until reaching 0.77 at 200 K, with an unchanged polarisation axis determined by the material crystallography. A combination of Fermi-Dirac statistics and k·p theory with consideration of quantum dot anisotropy allows us to elucidate the origin of the robust, almost temperature-insensitive polarisation properties of this system from a fundamental perspective, producing results in very good agreement with the experimental findings. This work demonstrates that optical polarisation control can be achieved in solid-state quantum dots at thermoelectrically cooled temperatures, thereby opening the possibility of polarisation-based quantum dot applications in on-chip conditions.en
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EP/M012379/1; EP/M011682/1); Agency for Science, Technology and Research (National Science Scholarship); Leverhulme Trust (Senior Research Fellowship)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid12067
dc.identifier.citationWang, T., Puchtler, T. J., Patra, S. K., Zhu, T., Jarman, J. C., Oliver, R. A., Schulz, S. and Taylor, R. A. (2017) 'Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures', Scientific Reports, 7, 12067 (9pp). doi: 10.1038/s41598-017-12233-6en
dc.identifier.doi10.1038/s41598-017-12233-6
dc.identifier.endpage9
dc.identifier.issn2045-2322
dc.identifier.journaltitleScientific Reportsen
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/5137
dc.identifier.volume7
dc.language.isoenen
dc.publisherNature Publishing Groupen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/13/SIRG/2210/IE/Shaping the electronic and optical properties of non- and semi-polar nitride-based semiconductor nanostructures/
dc.relation.urihttps://www.nature.com/articles/s41598-017-12233-6
dc.rights© 2017, the Authors 2017. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectQuantum dotsen
dc.subjectQuantum opticsen
dc.titleDeterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperaturesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3960.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
Description:
Published Version