Criticality, factorization, and long-range correlations in the anisotropic XY model
Loading...
Files
Published Version
Date
2013
Authors
Campbell, Steve
Richens, Jonathan
Lo Gullo, Nicola
Busch, Thomas
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Published Version
Abstract
We study the long-range quantum correlations in the anisotropic XY model. By first examining the thermodynamic limit, we show that employing the quantum discord as a figure of merit allows one to capture the main features of the model at zero temperature. Furthermore, by considering suitably large site separations we find that these correlations obey a simple scaling behavior for finite temperatures, allowing for efficient estimation of the critical point. We also address ground-state factorization of this model by explicitly considering finite-size systems, showing its relation to the energy spectrum and explaining the persistence of the phenomenon at finite temperatures. Finally, we compute the fidelity between finite and infinite systems in order to show that remarkably small system sizes can closely approximate the thermodynamic limit.
Description
Keywords
Statistical-mechanics , Broken symmetry , Critical-point , Quantum , Entanglement , State
Citation
Campbell, S., Richens, J., Gullo, N. L. and Busch, T. (2013) 'Criticality, factorization, and long-range correlations in the anisotropic XY model', Physical Review A, 88(6), 062305. (8pp). doi: 10.1103/PhysRevA.88.062305
Link to publisher’s version
Collections
Copyright
© 2013, American Physical Society