Tunable power-phase distributions in a phonon-magnon-coupled magnon microwave antenna for reservoir computing
dc.contributor.author | Samanta, Arindam | en |
dc.contributor.author | Roy, Saibal | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | National Science Foundation | en |
dc.contributor.funder | Department for Education, UK Government | en |
dc.date.accessioned | 2024-12-05T14:15:12Z | |
dc.date.available | 2024-12-05T14:15:12Z | |
dc.date.issued | 2024-11-26 | en |
dc.description.abstract | Exploring the power and phase profiles of spin waves not only enhances our fundamental understanding of magnetic materials but also opens up avenues for energy-efficient technologies such as spintronics, magnonics, and potentially reservoir computing. Here, we present the power-phase distributions and their tunability of a surface-acoustic-wave-driven “magnon microwave antenna” (MMA), comprising patterned arrays of magnetostrictive nanomagnets embedded in piezoelectric heterostructures. The MMA generates tunable microwave frequencies without external bias fields, thanks to phonon-magnon coupling, producing multimode microwave frequencies with nonvolatile spin textures. A comprehensive static magnetic study elucidates the crucial role of the demagnetization energy distribution, rather than its overall magnitude in magnetization reversal processes. Additionally, functional tunability could be achieved through amplitude-dependent training using various combinations of nanowire and nanodot dimensions, topologies, material properties, and array configurations. The nonvolatile nature of the spin textures generated in the MMA under bias-field-free conditions is promising for energy-efficient logic and low-power computing applications. Thus this work introduces a novel alternative approach, paving the way to utilize these MMAs for on-chip reservoir computing, where amplitude varies at the operating frequency. | en |
dc.description.sponsorship | Science Foundation Ireland (NSF-SFI-DFE within the tripartite US-Ireland program (Irish Project Grant ID: SFI-22/US/3852-nano-antenna)) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 054076 | en |
dc.identifier.citation | Samanta, A. and Roy, S. (2024) 'Tunable power-phase distributions in a phonon-magnon-coupled magnon microwave antenna for reservoir computing', Physical Review Applied, 22(5), 054076 (18pp). https://doi.org/10.1103/PhysRevApplied.22.054076 | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevApplied.22.054076 | en |
dc.identifier.endpage | 18 | en |
dc.identifier.issn | 2331-7019 | en |
dc.identifier.issued | 5 | en |
dc.identifier.journaltitle | Physical Review Applied | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/16712 | |
dc.identifier.volume | 22 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.ispartof | Physical Review Applied | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Frontiers for the Future::Awards/21/FFP-A/10003/IE/“High Efficiency, Novel Nonlinear Wideband, M/NEMS Electromagnetic Vibrational Generators for Powering Internet of Things – MERIT”/ | en |
dc.rights | © 2024, American Physical Society. All rights reserved. | en |
dc.subject | Magnons | en |
dc.subject | Phonons | en |
dc.subject | Physics of computation | en |
dc.subject | Spin waves | en |
dc.subject | Ferromagnets | en |
dc.subject | Nanostructures | en |
dc.subject | Micromagnetic modeling | en |
dc.subject | Microwave techniques | en |
dc.title | Tunable power-phase distributions in a phonon-magnon-coupled magnon microwave antenna for reservoir computing | en |
dc.type | Article (peer-reviewed) | en |
oaire.citation.issue | 5 | en |
oaire.citation.volume | 22 | en |