Monolayer doping of Si with improved oxidation resistance
dc.contributor.author | O'Connell, John | |
dc.contributor.author | Collins, Gillian | |
dc.contributor.author | McGlacken, Gerard P. | |
dc.contributor.author | Duffy, Ray | |
dc.contributor.author | Holmes, Justin D. | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2016-04-20T13:33:37Z | |
dc.date.available | 2016-04-20T13:33:37Z | |
dc.date.issued | 2016-01-26 | |
dc.date.updated | 2016-04-01T16:21:11Z | |
dc.description.abstract | In this article, the functionalization of planar silicon with arsenic- and phosphorus-based azides was investigated. Covalently bonded and well-ordered alkyne-terminated monolayers were prepared from a range of commercially available dialkyne precursors using a well-known thermal hydrosilylation mechanism to form an acetylene-terminated monolayer. The terminal acetylene moieties were further functionalized through the application of copper-catalyzed azide–alkyne cycloaddition (CuAAC) reactions between dopant-containing azides and the terminal acetylene groups. The introduction of dopant molecules via this method does not require harsh conditions typically employed in traditional monolayer doping approaches, enabling greater surface coverage with improved resistance toward reoxidation. X-ray photoelectron spectroscopy studies showed successful dialkyne incorporation with minimal Si surface oxidation, and monitoring of the C 1s and N 1s core-level spectra showed successful azide–alkyne cycloaddition. Electrochemical capacitance–voltage measurements showed effective diffusion of the activated dopant atoms into the Si substrates. | en |
dc.description.sponsorship | Science Foundation Ireland (SFI Grant: 09/IN.1/I2602) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | O’CONNELL, J., COLLINS, G., MCGLACKEN, G. P., DUFFY, R. & HOLMES, J. D. 2016. Monolayer Doping of Si with Improved Oxidation Resistance. ACS Applied Materials & Interfaces, 8, 4101-4108. http://dx.doi.org/10.1021/acsami.5b11731 | en |
dc.identifier.doi | 10.1021/acsami.5b11731 | |
dc.identifier.endpage | 4108 | en |
dc.identifier.issn | 1944-8244 | |
dc.identifier.issued | 6 | en |
dc.identifier.journaltitle | ACS applied materials & interfaces | en |
dc.identifier.startpage | 4101 | en |
dc.identifier.uri | https://hdl.handle.net/10468/2465 | |
dc.identifier.volume | 8 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.uri | http://pubs.acs.org/journal/aamick | |
dc.rights | © 2016 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acsami.5b11731 | en |
dc.subject | Monolayer | en |
dc.subject | Doping | en |
dc.subject | Phosphorus | en |
dc.subject | Click chemistry | en |
dc.subject | Arsenic | en |
dc.subject | Silicon | en |
dc.subject | Functionalization | en |
dc.subject | Hydrogen-terminated silicon | en |
dc.subject | Germanium nanowires | en |
dc.subject | Hydrosilylation | en |
dc.subject | Photoemission | en |
dc.subject | Spectroscopy | en |
dc.subject | Alkyne-azide cycloaddition | en |
dc.title | Monolayer doping of Si with improved oxidation resistance | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OConnell_et_al_Manuscript_(am-2015-11731t)_Clean.pdf
- Size:
- 440.6 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: